Antiparallel segregation of notch components in the immunological synapse directs reciprocal signaling in allogeneic Th:DC conjugates.

J Immunol

Division of Pediatric Hematology-Oncology and Bone Marrow Transplantation, Children's Hospital of Pittsburgh, University of Pittsburgh, PA 15213, USA.

Published: July 2007

Direct T cell allorecognition underlies the development of a vigorous immune response in the clinical setting of acute graft rejection. The Notch pathway is an important regulator of Th immune responses, yet the molecular underpinnings of directional Notch signaling, otherwise critical for binary cell fate decisions, are unknown during autologous or allogeneic Th:DC interactions. Using the development of immune synapses (IS) in the allogeneic, human physiological Th:DC interaction, we demonstrate that Th-Notch1 receptor and DC-Notch ligands (Delta-like1, Jagged1) cluster in their apposed central-supramolecular-activation-clusters (cSMAC), whereas DC-Notch1 receptor and Th-Notch ligands cluster in their apposed peripheral-SMAC (pSMAC). Numb, a negative regulator of Notch, is excluded from the IS-microdomains where Notch1 receptor accumulates. This antiparallel arrangement across the partnering halves of the IS supports reciprocal Notch signal propagation in the DC-to-Th direction via the cSMAC and Th-to-DC direction via the pSMAC. As a result, processed Notch1 receptor (Notch-intracellular-domain, NICD1) and its ligands, as well as their downstream targets, HES-1 and phosphorylated-STAT3, accumulate in the nuclei of both cell-types. There is also enhancement of GLUT1 expression in both cell-types, as well as increased production of Th-IFN-gamma. Significantly, neutralizing Notch1R Ab inhibits NICD1 and HES-1 nuclear translocation, and production of IFN-gamma. In contrast, the IS formed during Ag-nonspecific, autologous Th:DC interaction is immature, resulting in failure of Notch1 receptor segregation and subsequent nuclear translocation of NICD1. Our results provide the first evidence for the asymmetric recruitment of Notch components in the Th:DC immunological synapse, which regulates the bidirectional Notch signal propagation.

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.179.2.819DOI Listing

Publication Analysis

Top Keywords

notch1 receptor
12
notch components
8
immunological synapse
8
allogeneic thdc
8
thdc interaction
8
cluster apposed
8
notch signal
8
signal propagation
8
nuclear translocation
8
notch
7

Similar Publications

Uncovering potential causal genes for undiagnosed congenital anomalies using an in-house pipeline for trio-based whole-genome sequencing.

Hum Genomics

January 2025

Division of Genome Science, Department of Precision Medicine, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Chungbuk, 28159, Republic of Korea.

Background: Congenital anomalies (CAs) encompass a wide spectrum of structural and functional abnormalities during fetal development, commonly presenting at birth. Identifying the cause of CA is essential for accurate diagnosis and treatment. Using a target-gene approach, genetic variants could be found in certain CA patients.

View Article and Find Full Text PDF

Periostin-mediated NOTCH1 activation between tumor cells and HSCs crosstalk promotes liver metastasis of small cell lung cancer.

J Exp Clin Cancer Res

January 2025

National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.

Background: Metastasis is the primary cause of mortality in small cell lung cancer (SCLC), with the liver being a predominant site for distal metastasis. Despite this clinical significance, mechanisms underlying the interaction between SCLC and liver microenvironment, fostering metastasis, remain unclear.

Methods: SCLC patient tissue array, bioinformatics analysis were performed to demonstrate the role of periostin (POSTN) in SCLC progression, metastasis, and prognosis.

View Article and Find Full Text PDF

Background: Muscle-invasive bladder cancer (MIBC) is a prevalent cancer characterized by molecular and clinical heterogeneity. Assessing the spatial heterogeneity of the MIBC microenvironment is crucial to understand its clinical significance.

Methods: In this study, we used imaging mass cytometry (IMC) to assess the spatial heterogeneity of MIBC microenvironment across 185 regions of interest in 40 tissue samples.

View Article and Find Full Text PDF

Objective: This study aims to explore the potential role of mesenchymal stem cells (MSCs) in the treatment of osteoarthritis (OA), particularly the function of the NOTCH1 signaling pathway in maintaining the stemness of MSCs and in chondrocyte differentiation.

Methods: Utilizing diverse analytical techniques on an osteoarthritis dataset, we unveil distinct gene expression patterns and regulatory relationships, shedding light on potential mechanisms underlying the disease. Techniques used include the culture of MSCs, induction of differentiation into chondrocytes, establishment of stable cell lines, Western Blot, and immunofluorescence.

View Article and Find Full Text PDF

Diversity in Notch ligand-receptor signaling interactions.

Elife

January 2025

Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States.

The Notch signaling pathway uses families of ligands and receptors to transmit signals to nearby cells. These components are expressed in diverse combinations in different cell types, interact in a many-to-many fashion, both within the same cell (in cis) and between cells (in trans), and their interactions are modulated by Fringe glycosyltransferases. A fundamental question is how the strength of Notch signaling depends on which pathway components are expressed, at what levels, and in which cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!