Background: Pseudoxanthoma elasticum (PXE), an autosomal recessive disorder with considerable phenotypic variability, mainly affects the eyes, skin and cardiovascular system, characterised by dystrophic mineralization of connective tissues. It is caused by mutations in the ABCC6 (ATP binding cassette family C member 6) gene, which encodes MRP6 (multidrug resistance-associated protein 6).

Objective: To investigate the mutation spectrum of ABCC6 and possible genotype-phenotype correlations.

Methods: Mutation data were collected on an international case series of 270 patients with PXE (239 probands, 31 affected family members). A denaturing high-performance liquid chromatography-based assay was developed to screen for mutations in all 31 exons, eliminating pseudogene coamplification. In 134 patients with a known phenotype and both mutations identified, genotype-phenotype correlations were assessed.

Results: In total, 316 mutant alleles in ABCC6, including 39 novel mutations, were identified in 239 probands. Mutations were found to cluster in exons 24 and 28, corresponding to the second nucleotide-binding fold and the last intracellular domain of the protein. Together with the recurrent R1141X and del23-29 mutations, these mutations accounted for 71.5% of the total individual mutations identified. Genotype-phenotype analysis failed to reveal a significant correlation between the types of mutations identified or their predicted effect on the expression of the protein and the age of onset and severity of the disease.

Conclusions: This study emphasises the principal role of ABCC6 mutations in the pathogenesis of PXE, but the reasons for phenotypic variability remain to be explored.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2597973PMC
http://dx.doi.org/10.1136/jmg.2007.051094DOI Listing

Publication Analysis

Top Keywords

mutations identified
16
mutations
10
genotype-phenotype analysis
8
international case
8
case series
8
pseudoxanthoma elasticum
8
phenotypic variability
8
239 probands
8
identified genotype-phenotype
8
abcc6
5

Similar Publications

PATL2 mutations affect human oocyte maternal mRNA homeostasis and protein interactions in cell cycle regulation.

Cell Biosci

December 2024

Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.

Background: Oocyte maturation defect (OMD) and early embryonic arrest result in female infertility. Previous studies have linked biallelic mutations in the PATL2 gene to OMD, yet the underlying mechanism remains largely unknown.

Results: This study uncovers three novel mutations (c.

View Article and Find Full Text PDF

Breeders adjust wheat heading dates to improve regional adaptability and reduce or mitigate yield losses caused by meteorological disasters, pests and diseases. The Ppd-1 genes play a crucial role in determining wheat sensitivity to changes in day-length and serve as key regulators of heading dates once the vernalization requirement is satisfied. In this study, we identified a new allelic variant of the promoter region, Ppd-B1a.

View Article and Find Full Text PDF

Variants in the hereditary cancer-associated and genes can alter RNA splicing, producing transcripts that encode internally truncated yet potentially functional proteins. However, few studies have quantitatively analyzed variant-specific splicing isoforms. Here, we investigated cells heterozygous and homozygous for the :c.

View Article and Find Full Text PDF

Background/aim: Soft tissue sarcoma (STS) is a mesenchymal tumor affecting multiple organs in dogs. Previous studies identified activation of the phosphatidylinositol-3 kinase (PI3K)/protein kinase B (PKB, AKT) pathway in canine STS cell lines and clinical samples, but the underlying mechanism remains unclear. This study investigated PTEN loss, PIK3CA mutation, and EGFR over-expression as potential drivers of PI3K/AKT pathway activation in STS.

View Article and Find Full Text PDF

SLC15A2 Serves as a Novel Prognostic Biomarker and Target for Prostate Cancer.

Anticancer Res

December 2024

Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology, Guangzhou, P.R. China;

Background/aim: Solute carrier (SLC) family 15 member 2 (SLC15A2) is an integral member of the SLC family that plays a pivotal role in numerous biological processes, including the regulation of cellular signaling pathways. However, its role in prostate cancer (PCa) remains inadequately elucidated. This study aims to investigate the prognostic significance of SLC15A2 in PCa.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!