Lactobacillus reuteri shows certain beneficial effects to human health and is recognized as a probiotic. However, its application in frozen foods is still not popular because of its low survival during freezing and frozen storage. Cell immobilization technique could effectively exert protection effects to microbial cells in order to enhance their endurance to unfavorable environmental conditions as well as to improve their viability and cell concentration. Ca-alginate and kappa-carrageenan were used to immobilize L. reuteri in this research, and the immobilized cells were exposed to different freezing temperatures, i.e. -20 degrees C, -40 degrees C, -60 degrees C, -80 degrees C, and stored at -40 degrees C and -80 degrees C for 12 weeks. The objectives were to study the protection effects of cell immobilization against the adverse conditions of freezing and frozen storage, and the effects of freezing temperatures to the immobilized cells. Cell immobilization was used to raise the survival of L. reuteri during freezing and frozen storage in order to develop frozen foods with the probiotic effects of L. reuteri. Results indicated that immobilized L. reuteri possessed better survival in both freezing and frozen storage. The survival of immobilized L. reuteri was higher than that of free cells, and the effects of lower freezing temperature were better than higher freezing temperature. The immobilization effects of Ca-alginate were found to be superior to kappa-carrageenan. Cell immobilized L. reuteri exhibits potential to be used in frozen foods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mimet.2007.06.004 | DOI Listing |
J Biotechnol
January 2025
Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China. Electronic address:
In our previous study, the whole cells containing an aldo-keto reductase (yhdN) and glucose dehydrogenase (GDH) were constructed and applied in a stereoselective carbonyl reduction reaction to prepare (S)-NEMCA-HEPE, being a key chiral intermediate of (S)-Rivastigmine which is widely prescribed for the treatment of Alzheimer's disease. Although the conversion and enantiomeric excess (e.e.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China. Electronic address:
Cadmium (Cd) contamination greatly hinders plant productivity. Nanotechnology offers a promising solution for Cd phytotoxicity. The novelty of this study lies in the limited research on the effects of nanoiron (FeONPs) in regulating Cd toxicity in oilseed crops.
View Article and Find Full Text PDFAdv Mater
January 2025
National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China.
3D printed titanium scaffold has promising applications in orthopedics. However, the bioinert titanium presents challenges for promoting vascularization and tissue growth within the porous scaffold for stable osteointegration. In this study, a modular porous titanium scaffold is created using 3D printing and a gradient-surface strategy to immobilize QK peptide on the surface with a bi-directional gradient distribution.
View Article and Find Full Text PDFAm J Ophthalmol Case Rep
March 2025
Department of Ophthalmology, Hospital Sultan Idris Shah, Serdang, Malaysia.
Purpose: To highlight a case report of high-grade primary lacrimal sac Burkitt lymphoma in a young adult.
Observation: A 25-year-old gentleman was referred to the oculoplastic center for left eye medial canthal progressive swelling at the level below the medial canthal tendon for two months associated with tearing. He was initially treated for preseptal cellulitis but failed to respond to antibiotics.
Langmuir
January 2025
Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
Various methods exist for exploring different aspects of these mechanisms. However, techniques for investigating structural differences between the reduced and oxidized forms of an enzyme are limited. Here, we propose electrochemical small-angle X-ray scattering (EC-SAXS) as a novel method for potential-dependent structural analysis of redox enzymes and redox-active proteins.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!