To investigate whether the phosphorylation of cyclic AMP response element-binding protein (CREB) is implicated in the pathogenesis of experimental autoimmune encephalomyelitis (EAE), the change in the level of CREB phosphorylation was analyzed in the spinal cord of Lewis rats with EAE. Western blot analysis showed that the phosphorylation of CREB in the spinal cord of rats increased significantly at the peak stage of EAE compared with the controls (p<0.05) and declined significantly in the recovery stage (p<0.05). Immunohistochemistry showed that the phosphorylated form of CREB (p-CREB) was constitutively immunostained in few astrocytes and dorsal horn neurons in the spinal cord of normal rats. In the EAE-affected spinal cord, p-CREB was mainly found in ED1-positive macrophages at the peak stage of EAE, and the number of p-CREB-immunopositive astrocytes was markedly increased in the spinal cord with EAE compared with the controls. Moreover, p-CREB immunoreactivity of sensory neurons, which are closely associated with neuropathic pain, was significantly increased in the dorsal horns at the peak stage of EAE. Based on these results, we suggest that the increased phosphorylation of CREB in EAE lesions was mainly attributable to the infiltration of inflammatory cells and astrogliosis, possibly activating gene transcription, and that its increase in the sensory neurons in the dorsal horns is involved in the generation of neuropathic pain in the rat EAE model.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.brainres.2007.05.072 | DOI Listing |
Biomater Transl
November 2024
Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, Tongji University, Shanghai, China.
Stem cell-derived spinal cord organoids (SCOs) have revolutionised the study of spinal cord development and disease mechanisms, offering a three-dimensional model that recapitulates the complexity of native tissue. This review synthesises recent advancements in SCO technology, highlighting their role in modelling spinal cord morphogenesis and their application in neurodegenerative disease research. We discuss the methodological breakthroughs in inducing regional specification and cellular diversity within SCOs, which have enhanced their predictive ability for drug screening and their relevance in mimicking pathological conditions such as neurodegenerative diseases and neuromuscular disorders.
View Article and Find Full Text PDFJ Multidiscip Healthc
January 2025
School of Nursing, Ningxia Medical University, Yinchuan, People's Republic of China.
Background: Community integration (CI) is the ultimate goal of rehabilitation for individuals with disabilities. It plays a significant role in restoring their social functioning and facilitating their reintegration into community and family life. However, no studies have utilized bibliometric methods to explore community integration.
View Article and Find Full Text PDFJ Ginseng Res
January 2025
Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea.
Background: The non-saponin (NS) fraction is an important active component of with multifunctional pharmacological activities including neuroprotective, immune regulatory, anti-inflammatory, and antioxidant effects. However, the effects of NSs on multiple sclerosis (MS), a chronic and autoimmune demyelinating disorder, have not yet been demonstrated.
Purpose: and Methods: The goal of the present study was to demonstrate the pharmacological actions of NSs on movement dysfunctions and the related mechanisms of action using an experimental autoimmune encephalomyelitis (EAE) mouse model of MS.
J Pain Res
January 2025
Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
Purpose: Spinal cord stimulation (SCS) is pivotal in treating chronic intractable pain. To elucidate the mechanism of action among conventional and current novel types of SCSs, a stable and reliable electrophysiology model in the consensus animals to mimic human SCS treatment is essential. We have recently developed a new in vivo implantable pulsed-ultrahigh-frequency (pUHF) SCS platform for conducting behavioral and electrophysiological studies in rats.
View Article and Find Full Text PDFNeurophotonics
January 2025
University of Kentucky, Department of Biomedical Engineering, Lexington, Kentucky, United States.
Significance: Cerebral blood flow (CBF) imaging is crucial for diagnosing cerebrovascular diseases. However, existing large neuroimaging techniques with high cost, low sampling rate, and poor mobility make them unsuitable for continuous and longitudinal CBF monitoring at the bedside.
Aim: We aimed to develop a low-cost, portable, programmable scanning diffuse speckle contrast imaging (PS-DSCI) technology for fast, high-density, and depth-sensitive imaging of CBF in rodents.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!