To investigate whether the phosphorylation of cyclic AMP response element-binding protein (CREB) is implicated in the pathogenesis of experimental autoimmune encephalomyelitis (EAE), the change in the level of CREB phosphorylation was analyzed in the spinal cord of Lewis rats with EAE. Western blot analysis showed that the phosphorylation of CREB in the spinal cord of rats increased significantly at the peak stage of EAE compared with the controls (p<0.05) and declined significantly in the recovery stage (p<0.05). Immunohistochemistry showed that the phosphorylated form of CREB (p-CREB) was constitutively immunostained in few astrocytes and dorsal horn neurons in the spinal cord of normal rats. In the EAE-affected spinal cord, p-CREB was mainly found in ED1-positive macrophages at the peak stage of EAE, and the number of p-CREB-immunopositive astrocytes was markedly increased in the spinal cord with EAE compared with the controls. Moreover, p-CREB immunoreactivity of sensory neurons, which are closely associated with neuropathic pain, was significantly increased in the dorsal horns at the peak stage of EAE. Based on these results, we suggest that the increased phosphorylation of CREB in EAE lesions was mainly attributable to the infiltration of inflammatory cells and astrogliosis, possibly activating gene transcription, and that its increase in the sensory neurons in the dorsal horns is involved in the generation of neuropathic pain in the rat EAE model.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainres.2007.05.072DOI Listing

Publication Analysis

Top Keywords

spinal cord
12
phosphorylation cyclic
8
cyclic amp
8
amp response
8
response element-binding
8
element-binding protein
8
cord lewis
8
lewis rats
8
experimental autoimmune
8
autoimmune encephalomyelitis
8

Similar Publications

Progress in spinal cord organoid research: advancing understanding of neural development, disease modelling, and regenerative medicine.

Biomater Transl

November 2024

Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, Tongji University, Shanghai, China.

Stem cell-derived spinal cord organoids (SCOs) have revolutionised the study of spinal cord development and disease mechanisms, offering a three-dimensional model that recapitulates the complexity of native tissue. This review synthesises recent advancements in SCO technology, highlighting their role in modelling spinal cord morphogenesis and their application in neurodegenerative disease research. We discuss the methodological breakthroughs in inducing regional specification and cellular diversity within SCOs, which have enhanced their predictive ability for drug screening and their relevance in mimicking pathological conditions such as neurodegenerative diseases and neuromuscular disorders.

View Article and Find Full Text PDF

Background: Community integration (CI) is the ultimate goal of rehabilitation for individuals with disabilities. It plays a significant role in restoring their social functioning and facilitating their reintegration into community and family life. However, no studies have utilized bibliometric methods to explore community integration.

View Article and Find Full Text PDF

Background: The non-saponin (NS) fraction is an important active component of with multifunctional pharmacological activities including neuroprotective, immune regulatory, anti-inflammatory, and antioxidant effects. However, the effects of NSs on multiple sclerosis (MS), a chronic and autoimmune demyelinating disorder, have not yet been demonstrated.

Purpose: and Methods: The goal of the present study was to demonstrate the pharmacological actions of NSs on movement dysfunctions and the related mechanisms of action using an experimental autoimmune encephalomyelitis (EAE) mouse model of MS.

View Article and Find Full Text PDF

Purpose: Spinal cord stimulation (SCS) is pivotal in treating chronic intractable pain. To elucidate the mechanism of action among conventional and current novel types of SCSs, a stable and reliable electrophysiology model in the consensus animals to mimic human SCS treatment is essential. We have recently developed a new in vivo implantable pulsed-ultrahigh-frequency (pUHF) SCS platform for conducting behavioral and electrophysiological studies in rats.

View Article and Find Full Text PDF

Programmable scanning diffuse speckle contrast imaging of cerebral blood flow.

Neurophotonics

January 2025

University of Kentucky, Department of Biomedical Engineering, Lexington, Kentucky, United States.

Significance: Cerebral blood flow (CBF) imaging is crucial for diagnosing cerebrovascular diseases. However, existing large neuroimaging techniques with high cost, low sampling rate, and poor mobility make them unsuitable for continuous and longitudinal CBF monitoring at the bedside.

Aim: We aimed to develop a low-cost, portable, programmable scanning diffuse speckle contrast imaging (PS-DSCI) technology for fast, high-density, and depth-sensitive imaging of CBF in rodents.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!