Background: Helicobacter pylori infection of the gastric mucosa is strongly associated with gastritis, peptic ulcer disease, and gastric cancer. However, the mechanisms by which H. pylori causes cancer are currently unknown. Binding of epidermal growth factor (EGF) to its receptor (EGFR) may be important in the development of gastric cancer. This interaction accelerates cell proliferation and migration, and triggers epithelial cell signaling. In this study, we investigated the effects of H. pylori on EGFR- and AP-1-mediated signal transduction pathways in the AGS gastric epithelial cell line and gastric tissue from humans.
Methods: Cells were treated with H. pylori and cell death was examined at a variety of time points using cell viability and trypan blue exclusion dye assay. To investigate the effects on EGFR regulation, AGS cells were transfected with a full-length and truncated EGFR luciferase (luc) reporter. Tissue microarray containing 44 samples of gastric biopsies from H. pylori-positive patients was analyzed for protein expression level of EGFR by immunohistochemistry.
Results: EGFR promoter activity was increased (twofold) 3 h after treatment with H. pylori commenced. Using a series of EGFR promoter deletion mutants, we identified a region that was crucial for transactivation of the EGFR by H. pylori. To determine whether AP-1 binding was altered, we transfected AGS cells with an AP-1 luciferase construct and then treated them with H. pylori for up to 6 h. We found that AP-1 activity was induced by H. pylori in gastric cells, while electrophoretic mobility shift assays confirmed that binding of AP-1 to the EGFR promoter site was increased following H. pylori treatment. Binding of c-Jun and c-Fos to the EGFR promoter region -1,062/-900 was induced eight- and six fold, respectively, using ChIP assay. Active EGFR staining was markedly increased in gastric mucosa from infected persons, compared to uninfected controls.
Conclusions: We conclude that exposure of gastric cells to H. pylori induces increased production of EGFR through various signal transduction pathways, including those mediated by the EGFR and AP-1. Distinct effects on EGFR activation may specify the subset of AP-1 target genes that are selected, including those involved in proliferation and apoptosis. This is consistent with EGFR activation that was found in the gastric mucosa of humans infected with H. pylori. Hence, the balance between apoptosis and proliferation in these cells may be altered in response to injury caused by H. pylori infection, leading to an increased risk of cancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1572-0241.2007.01400.x | DOI Listing |
Exp Hematol Oncol
January 2025
Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
Background: Osimertinib has emerged as a critical element in the treatment landscape following recent clinical trials. Further investigation into the mechanisms driving resistance to Osimertinib is necessary to address the restricted treatment options and survival advantages that are compromised by resistance in patients with EGFR-mutated lung adenocarcinoma (LUAD).
Methods: Spatial transcriptomic and proteomic analyses were utilized to investigate the mechanisms of Osimertinib resistance.
Biomedicines
November 2024
Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA.
Glioblastoma multiforme (GBM), a WHO grade 4 glioma, is the most common and aggressive primary brain tumor, characterized by rapid progression and poor prognosis. The heterogeneity of GBM complicates diagnosis and treatment, driving research into molecular biomarkers that can offer insights into tumor behavior and guide personalized therapies. This review explores recent advances in molecular biomarkers, highlighting their potential to improve diagnosis and treatment outcomes in GBM patients.
View Article and Find Full Text PDFNeuropathology
January 2025
Department of Pathology, Kyorin University Faculty of Medicine, Tokyo, Japan.
The manifestation of glioblastoma, IDH-wildtype (GB) as intracranial hemorrhage (ICH) presents diagnostic and therapeutic challenges. Molecular characteristics, including TERT promoter mutation, EGFR amplification, and chromosome 7 gain/10 loss, were incorporated to diagnose GB in the fifth edition of the World Health Organization Classification of Tumors of the Central Nervous System. When molecular analyses fail to detect low fractions of these genetic alterations, the integrated diagnosis of GB can be enigmatic.
View Article and Find Full Text PDFNeoplasia
December 2024
Department of Pathology, Ajou University School of Medicine, Suwon 16499, Republic of Korea. Electronic address:
Glioblastoma, isocitrate dehydrogenase (IDH)-wildtype (GBM), is the most malignant brain tumor in adults, with limited therapeutic intervention. Previous studies have identified a few prognostic markers for GBM, including the methylation status of O-methylguanine-DNA methyltransferase (MGMT) promoter, TERT promoter mutation, EGFR amplification, and CDKN2A/2B deletion. However, the classification of GBM remains incomplete, necessitating a comprehensive analysis.
View Article and Find Full Text PDFCommun Biol
December 2024
Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University; State Key Laboratory of Respiratory Disease, Guangzhou, Guangdong, China.
Inevitable gefitinib resistance is the biggest bottleneck in current treatment and the mechanisms are not fully understood. Here, we observe that PFTK1 (also named CDK14) is significantly enhanced in NSCLC with gefitinib resistance. And the upregulation of PFTK1 is negatively associated with progression-free survival (PFS) in NSCLC patients who receive gefitinib treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!