Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background/aims: Patients with coagulation factor disorders require lifelong symptomatic treatment. This is associated with limited efficacy and transmission risks. From a clinical point of view, hepatocyte transplantation offers a rational alternative but is currently being hampered by lack of functional stability of engrafted cells. It was the aim of our study to devise culture conditions providing stable cell polarity, attachment and growth factor stimulation to improve longevity and coagulation factor production.
Methods: Human hepatocytes (HC) were plated on different extracellular matrices, inside collagen gel or Matrigel. HC were grown inside growth factor-enriched serum-free medium (SFM) or exposed to media switching from differentiation (DM) to dedifferentiation (DeDM).
Results: Over more than 30 days in vitro human HC synthesized coagulation factors (factors VII, VIII, IX, fibrinogen) and coagulation inhibitors (antithrombin III, protein C). Protein synthesis was augmented when HC were grown inside a 3D collagen type I matrix, while Matrigel showed no additional benefit. Soluble growth factors improved coagulation factor production when applied in SFM or in sequential DM/DeDM. Coagulation factor levels ranged from 3% to 12% in the first week to 2.5-5% after 4 weeks, reaching biologically relevant levels.
Conclusion: Preserved synthesis and secretion of coagulation factors in balanced proportion by human HC in this model may offer new perspectives for HC transplantation in coagulation defects of patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1478-3231.2007.01472.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!