This paper describes the development of artificial neural network (ANN) based carbon monoxide (CO) persistence (ANNCOP) models to forecast 8-h average CO concentration using 1-h maximum predicted CO data for the critical (winter) period (November-March). The models have been developed for three 8-h groupings of 10 P.M. to 6 A.M., 6 A.M., to 2 P.M. and 2-10 P.M., at two air quality control regions (AQCRs) in Delhi city, representing an urban intersection and an arterial road consisting heterogeneous traffic flows. The result indicates that time grouping of 2-10 PM is dominantly affected by inversion conditions and peak traffic flow. The ANNCOP model corresponding to this grouping predicts the 8-h average CO concentrations within the accuracy range of 68-71%. The CO persistence values derived from ANNCOP model are comparable with the persistence values as suggested by the Environmental Protection Agency (EPA), USA. This work demonstrates that ANN based model is capable of describing winter period CO persistence phenomena.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10661-007-9831-yDOI Listing

Publication Analysis

Top Keywords

artificial neural
8
neural network
8
based carbon
8
carbon monoxide
8
monoxide persistence
8
air quality
8
ann based
8
8-h average
8
winter period
8
anncop model
8

Similar Publications

This paper investigates the potential of artificial intelligence (AI) and machine learning (ML) to enhance the differentiation of cystic lesions in the sellar region, such as pituitary adenomas, Rathke cleft cysts (RCCs) and craniopharyngiomas (CP), through the use of advanced neuroimaging techniques, particularly magnetic resonance imaging (MRI). The goal is to explore how AI-driven models, including convolutional neural networks (CNNs), deep learning, and ensemble methods, can overcome the limitations of traditional diagnostic approaches, providing more accurate and early differentiation of these lesions. The review incorporates findings from critical studies, such as using the Open Access Series of Imaging Studies (OASIS) dataset (Kaggle, San Francisco, USA) for MRI-based brain research, highlighting the significance of statistical rigor and automated segmentation in developing reliable AI models.

View Article and Find Full Text PDF

Background: Cardiovascular diseases (CVDs) continue to be the world's greatest cause of death. To evaluate heart function and diagnose coronary artery disease (CAD), myocardial perfusion imaging (MPI) has become essential. Artificial intelligence (AI) methods have been incorporated into diagnostic methods such as MPI to improve patient outcomes in recent years.

View Article and Find Full Text PDF

Inter-individual variability in symptoms and the dynamic nature of brain pathophysiology present significant challenges in constructing a robust diagnostic model for migraine. In this study, we aimed to integrate different types of magnetic resonance imaging (MRI), providing structural and functional information, and develop a robust machine learning model that classifies migraine patients from healthy controls by testing multiple combinations of hyperparameters to ensure stability across different migraine phases and longitudinally repeated data. Specifically, we constructed a diagnostic model to classify patients with episodic migraine from healthy controls, and validated its performance across ictal and interictal phases, as well as in a longitudinal setting.

View Article and Find Full Text PDF

To improve the scientific accuracy and precision of children's physical fitness evaluations, this study proposes a model that combines self-organizing maps (SOM) neural networks with cluster analysis. Existing evaluation methods often rely on traditional, single statistical analyses, which struggle to handle the complexity of high-dimensional, nonlinear data, resulting in a lack of precision and personalization. This study uses the SOM neural network to reduce the dimensionality of high-dimensional health data.

View Article and Find Full Text PDF

Resistive memory-based zero-shot liquid state machine for multimodal event data learning.

Nat Comput Sci

January 2025

Key Lab of Fabrication Technologies for Integrated Circuits and Key Laboratory of Microelectronic Devices and Integrated Technology, Institute of Microelectronics of the Chinese Academy of Sciences, Beijing, China.

The human brain is a complex spiking neural network (SNN) capable of learning multimodal signals in a zero-shot manner by generalizing existing knowledge. Remarkably, it maintains minimal power consumption through event-based signal propagation. However, replicating the human brain in neuromorphic hardware presents both hardware and software challenges.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!