Ribosomal protein S1, the product of the essential rpsA gene, consists of six imperfect repeats of the same motif. Besides playing a critical role in translation initiation on most mRNAs, S1 also specifically autoregulates the translation of its own messenger. ssyF29 is a viable rpsA allele that carries an IS10R insertion within the coding sequence, resulting in a protein lacking the last motif (S1DeltaC). The growth of ssyF29 cells is slower than that of wild-type cells. Moreover, translation of a reporter rpsA-lacZ fusion is specifically stimulated, suggesting that the last motif is necessary for autoregulation. However, in ssyF29 cells the rpsA mRNA is also strongly destabilized; this destabilization, by causing S1DeltaC shortage, might also explain the observed slow-growth and autoregulation defect. To fix this ambiguity, we have introduced an early stop codon in the rpsA chromosomal gene, resulting in the synthesis of the S1DeltaC protein without an IS10R insertion (rpsADeltaC allele). rpsADeltaC cells grow much faster than their ssyF29 counterparts; moreover, in these cells S1 autoregulation and mRNA stability are normal. In vitro, the S1DeltaC protein binds mRNAs (including its own) almost as avidly as wild-type S1. These results demonstrate that the last S1 motif is dispensable for translation and autoregulation: the defects seen with ssyF29 cells reflect an IS10R-mediated destabilization of the rpsA mRNA, probably due to facilitated exonucleolytic degradation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1951931PMC
http://dx.doi.org/10.1128/JB.00445-07DOI Listing

Publication Analysis

Top Keywords

ssyf29 cells
12
rpsa gene
8
is10r insertion
8
rpsa mrna
8
s1deltac protein
8
rpsa
6
cells
6
protein
5
ssyf29
5
deleterious insertion
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!