Lon protease degrades transfer-messenger RNA-tagged proteins.

J Bacteriol

Department of Biochemistry and Cell Biology, Center for Infectious Diseases, Stony Brook University, Stony Brook, NY 11794, USA.

Published: September 2007

Bacterial trans translation is activated when translating ribosomes are unable to elongate or terminate properly. Small protein B (SmpB) and transfer-messenger RNA (tmRNA) are the two known factors required for and dedicated to trans translation. tmRNA, encoded by the ssrA gene, is a bifunctional molecule that acts both as a tRNA and as an mRNA during trans translation. The functions of tmRNA ensure that stalled ribosomes are rescued, the causative defective mRNAs are degraded, and the incomplete polypeptides are marked for targeted proteolysis. We present in vivo and in vitro evidence that demonstrates a direct role for the Lon ATP-dependent protease in the degradation of tmRNA-tagged proteins. In an endogenous protein tagging assay, lon mutants accumulated excessive levels of tmRNA-tagged proteins. In a reporter protein tagging assay with lambda-CI-N, the protein product of a nonstop mRNA construct designed to activate trans translation, lon mutant cells efficiently tagged the reporter protein, but the tagged protein exhibited increased stability. Similarly, a green fluorescent protein (GFP) construct containing a hard-coded C-terminal tmRNA tag (GFP-SsrA) exhibited increased stability in lon mutant cells. Most significantly, highly purified Lon preferentially degraded the tmRNA-tagged forms of proteins compared to the untagged forms. Based on these results, we conclude that Lon protease participates directly in the degradation of tmRNA-tagged proteins.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2045158PMC
http://dx.doi.org/10.1128/JB.00860-07DOI Listing

Publication Analysis

Top Keywords

trans translation
16
tmrna-tagged proteins
12
lon protease
8
degradation tmrna-tagged
8
protein tagging
8
tagging assay
8
reporter protein
8
lon mutant
8
mutant cells
8
exhibited increased
8

Similar Publications

Relying on composite nonlinear feedback, an output-feedback controller is robustly addressed in the singular models with uncertainties, disturbances and time-delays. For this purpose, an observer-based compensator is utilized to realize the purpose. In the presence of disturbance and uncertainty, it is demonstrated that the tracking error and the states of the overall system are ultimately bounded.

View Article and Find Full Text PDF

The Sexual Abuse History Questionnaire (SAHQ), a widely used screening tool for childhood sexual abuse (CSA) and adolescent/adult sexual assault (AASA) experiences, has limited examination of its psychometric properties in diverse populations. Our study assessed the SAHQ's psychometric properties (i.e.

View Article and Find Full Text PDF

Newts have large genomes harboring many repeat elements. How these elements shape the genome and relate to newts' unique regeneration ability remains unknown. We present here the chromosome-scale assembly of the 20.

View Article and Find Full Text PDF

Cholesterol metabolism regulator SREBP2 inhibits HBV replication via suppression of HBx nuclear translocation.

Front Immunol

January 2025

Department of Hepatology, Center for Pathogen Biology and Infectious Diseases, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin, China.

The intricate link between cholesterol metabolism and host immune responses is well recognized, but the specific mechanisms by which cholesterol biosynthesis influences hepatitis B virus (HBV) replication remain unclear. In this study, we show that SREBP2, a key regulator of cholesterol metabolism, inhibits HBV replication by interacting directly with the HBx protein, thereby preventing its nuclear translocation. We also found that inhibiting the ER-to-Golgi transport of the SCAP-SREBP2 complex or blocking SREBP2 maturation significantly enhances HBV suppression.

View Article and Find Full Text PDF

The multifaceted roles of retinoids in eye development, vision, and retinal degenerative diseases.

Curr Top Dev Biol

January 2025

Center for Translational Vision Research, Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, United States; Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States; Department of Chemistry, University of California Irvine, Irvine, CA, United States; Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States. Electronic address:

Vitamin A (all-trans-retinol; at-Rol) and its derivatives, known as retinoids, have been adopted by vertebrates to serve as visual chromophores and signaling molecules, particularly in the eye/retina. Few tissues rely on retinoids as heavily as the retina, and the study of genetically modified mouse models with deficiencies in specific retinoid-metabolizing proteins has allowed us to gain insight into the unique or redundant roles of these proteins in at-Rol uptake and storage, or their downstream roles in retinal development and function. These processes occur during embryogenesis and continue throughout life.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!