The relative volatilities of a variety of common ionic liquids have been determined for the first time. Equimolar mixtures of ionic liquids were vacuum-distilled in a glass sublimation apparatus at approximately 473 K. The composition of the initial distillate, determined by NMR spectroscopy, was used to establish the relative volatility of each ionic liquid in the mixture. The effect of alkyl chain length was studied by distilling mixtures of 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids, or mixtures of N-alkyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquids, with different alkyl chain lengths. For both classes of salts, the volatility is highest when the alkyl side chain is a butyl group. The effect of cation structure on volatility has been determined by distilling mixtures containing different types of cations. Generally speaking, ionic liquids based on imidazolium and pyridinium cations are more volatile than ionic liquids based on ammonium and pyrrolidinium cations, regardless of the types of counterions present. Similarly, ionic liquids based on the anions [(C2F5SO2)2N](-), [(C4F9SO2)(CF3SO2)N](-) , and [(CF3SO2)2N](-) are more volatile than ionic liquids based on [(CF3SO2)3C](-) and [CF3SO3](-), and are much more volatile than ionic liquids based on [PF6](-).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp072964j | DOI Listing |
Surface active ionic liquids (SAILs), offer potential advantages for pharmaceutical applications. Given the low permeability of gabapentin, an antiepileptic drug, in the gastrointestinal tract as classified by the Biopharmaceutics Classification Systems (BCS), understanding the micellization behavior of SAILs is essential for developing effective drug delivery systems to improve gabapentin bioavailability. This study explores the micellization and thermophysical behavior of SAILs (2-hydroxyethyl)ammonium laurate [2-HEA][Lau], bis(2-hydroxyethyl)ammonium laurate [BHEA][Lau], and tris(2-hydroxyethyl)ammonium laurate [THEA][Lau] in the presence of aqueous gabapentin solution at varied temperatures through COSMO analysis, electrical conductivity and surface tension measurements.
View Article and Find Full Text PDFSoft Matter
January 2025
Research Center for Macromolecules & Biomaterials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047, Japan.
We developed a facile one-pot method for fabricating physical gels consisting of ultrahigh molecular weight (UHMW) polymers and highly concentrated lithium salt electrolytes. We previously reported physical gels formed from the entanglement of UHMW polymers by radical polymerisation in aprotic ionic liquids. In this study, we found that the molecular weight of methacrylate polymers formed by radical polymerisation increased with the concentration of lithium salts in the organic solvents.
View Article and Find Full Text PDFSci Rep
January 2025
Petrochemicals Department, Egyptian Petroleum Research Institute, 1 Ahmed El Zomor St., Nasr City, Cairo, 11727, Egypt.
Recovering the remaining oil after primary and secondary extraction methods poses a significant challenge. Enhanced oil recovery (EOR) techniques, which involve injecting fluids into reservoirs, aim to increase recovery rates. Ionic liquids, known for their adaptability, are emerging as promising agents in EOR, improving oil displacement by reshaping fluid properties and interacting with reservoir rocks.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia.
In this work, we investigate the development of polymer electrolytes for sodium batteries based on sulfonamide functional polymer nanoparticles (NaNPs). The synthesis of the polymer NaNPs is carried out by emulsion copolymerization of methyl methacrylate and sodium sulfonamide methacrylate in the presence of a crosslinker, resulting in particle sizes of 50 nm, as shown by electron microscopy. Then, gel polymer electrolytes are prepared by mixing polymer NPs and different organic plasticizers including carbonates, glymes, sulfolanes and ionic liquids.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Department of Chemistry and Biochemistry, Brooklyn College of the City University of New York, 2900 Bedford Ave., Brooklyn, New York 11210, United States.
Nonstoichiometric pseudoprotic ionic liquids (NPPILs) are an emerging class of ionic liquids with interesting physical properties and intriguing prospects for technological applications. However, fundamental questions remain about the proton transfer equilibria that underlie their ionic character. We use a combination of nuclear magnetic resonance spectroscopy, infrared spectroscopy, and small-angle X-ray scattering to characterize the equilibria of trihexylamine/butyric acid and water/butyric acid mixtures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!