We describe the serial combination of temperature gradient focusing (TGF) and field-amplified continuous sample injection (FACSI) for improved analyte enrichment and electrophoretic separation. TGF is a counterflow equilibrium gradient method for the simultaneous concentration and separation of analytes. When TGF is implemented with a low conductivity sample buffer and a (relatively) high conductivity separation buffer, a form of sample enrichment similar to field-amplified sample stacking (FASS) or field-amplified sample injection (FASI) is achieved in addition to the normal TGF sample enrichment. FACSI-TGF differs from FASI in two important respects: continuous sample injection, versus a discrete injection, is utilized; because of the counterflow employed for TGF, the stacking interface exists in a pseudo-stationary region outside of the separation column. Notably, analyte concentration enrichment factors greater than the ratio of separation and sample conductivities (gamma) were achieved in this method. For gamma=6.1, the concentration factor for one model analyte (Oregon Green 488) was found to be 36-fold higher with FACSI-TGF as compared to TGF without FACSI. A separation of five fluorescently labeled amino acids is also demonstrated with the technique, yielding an average enrichment of greater than 1000-fold.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac070689rDOI Listing

Publication Analysis

Top Keywords

sample injection
16
continuous sample
12
sample
9
temperature gradient
8
gradient focusing
8
field-amplified continuous
8
analyte enrichment
8
sample enrichment
8
field-amplified sample
8
separation
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!