A ruthenium nitrosyl with 4-vinylpyridine (4-vpy) as one ligand, namely, [Ru(Me2bpb)(NO)(4-vpy)](BF4) (1), has been synthesized and structurally characterized. This diamagnetic {Ru-NO}6 nitrosyl is photoactive and readily releases NO upon exposure to low-intensity (5-10 mW) UV light (quantum yield at 300 nm = 0.18). Radical-induced copolymerization of 2-hydroxyethyl methacrylate (HEMA) and ethyleneglycol dimethacrylate (EGDMA) in the presence of 1 has afforded a 1-pHEMA, a transparent hydrogel in which 1 is covalently attached to the polymer backbone. Exposure of 1-pHEMA to UV light (5-10 mW) results in rapid release of NO (detected by NO electrode) that can be delivered to biological targets such as myoglobin. The photoactivity of 1-pHEMA is strictly dependent on exposure to UV light.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic700694bDOI Listing

Publication Analysis

Top Keywords

ruthenium nitrosyl
8
incorporation designed
4
designed ruthenium
4
nitrosyl polyhema
4
polyhema hydrogel
4
hydrogel light-activated
4
light-activated delivery
4
delivery myoglobin
4
myoglobin ruthenium
4
nitrosyl 4-vinylpyridine
4

Similar Publications

Article Synopsis
  • Limonene, a compound in essential oils, demonstrates various health benefits like antifungal and antioxidant properties, but its effects can vary based on concentration, showing a biphasic response.
  • The study investigates limonene's impact on rat aorta contractions, revealing it can enhance or inhibit contractions depending on the dose, particularly with phenylephrine.
  • Understanding these dose-dependent effects is crucial for determining safe and effective therapeutic uses of limonene in clinical settings.
View Article and Find Full Text PDF

Investigation of short-term chemical changes in stable ruthenium added to soil by using X-ray absorption fine-structure analysis.

Radiat Prot Dosimetry

November 2024

Department of Radioecology, Institute for Environmental Sciences, 1-7, Ienomae, Obuchi, Rokkasho, Kamikita, Aomori, 039-3212, Japan.

Article Synopsis
  • - Radioactive ruthenium can be accidentally released from nuclear fuel reprocessing plants, but there's limited research on its environmental behavior due to its complicated chemical properties.
  • - A study was conducted using X-ray absorption fine-structure analysis to examine different chemical forms of stable ruthenium (like RuO4, RuO2, Ru(NO)(NO3)3, and RuCl3) added to soil, revealing how they react and change over time.
  • - Results indicated that some forms (e.g., RuO4 and RuCl3) change quickly when in soil, while others (like RuO2 and Ru(NO)(NO3)3) are stable, highlighting the importance of understanding the chemical forms of ru
View Article and Find Full Text PDF

Ruthenium(II) tetraamine nitrosyl complexes with N-heterocyclic ligands are known for their potential as nitric oxide (NO) donors, capable of releasing NO through either direct photodissociation or one-electron reduction of the Ru(II)NO center. This study delivers a novel insight into the one-electron reduction mechanism for the model complex -[Ru(NO)(NH)(py)] (RuNOpy, py = pyridine) in phosphate buffer solution (pH 7.4).

View Article and Find Full Text PDF

Conventional bone tissue engineering materials struggle to reinstate physiological bone remodeling in a diabetic context, primarily due to the compromised repolarization of proinflammatory macrophages to anti-inflammatory macrophages. Here, leveraging single-cell RNA sequencing (scRNA-seq) technology, the pivotal role of nitric oxide (NO) and reactive oxygen species (ROS) is unveiled in impeding macrophage repolarization during physiological bone remodeling amidst diabetes. Guided by scRNA-seq analysis, we engineer a multienzymatic bone tissue engineering hydrogel scaffold (MEBTHS) composed is engineered of methylpropenylated gelatin hydrogel integrated with ruthenium nanozymes, possessing both Ru and Ru components.

View Article and Find Full Text PDF

A new nitro-nitrosyl complex [RuNO(Phen)(NO)OH] (1) was synthesized and characterized by X-ray diffraction, where Phen = 1,10-phenanthroline. The complex was crystallized in two different modifications without (1) and with a solvent molecule of DMF (1a). The photolysis process together with the determination of the quantum yield of NO release was investigated in acetonitrile solution using a special flow-through system for the simultaneous registration of infrared (IR) and optical absorption (UV-vis) spectra under irradiation with 450 nm light.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!