Here the isolation and characterization of CitAMT1 cDNA from citrange Troyer (Citrus sinensis L. OsbeckxPoncirus trifoliata Blanco) is reported, suggesting that this belongs to the AMT gene family, which is involved in the high-affinity transport system (HATS). Results show that in Citrus plants, the HATS is much more dependent on the light conditions and C status of the roots than the low-affinity transport system. Most importantly, a strong correlation was found between the regulation of both HATS activity and CitAMT1 expression. CitAMT1 expression is sucrose-stimulated and may account for the regulation of NH(4)(+) HATS. Furthermore, a similar link was also recorded with photosynthetic activity in the shoots, suggesting that the variations in production and transport of photosynthates to the roots are responsible for the diurnal changes of both CitAMT1 expression and NH(4)(+) HATS activity. On the other hand, results indicate that the effect of stimulating light on CitAMT1 expression and NH(4)(+) HATS activity is independent of the circadian rhythm. Finally, CitAMT1 expression seems to be specifically stimulated by sucrose, suggesting that sucrose is a pivotal signal governing both assimilate partitioning from source organs and assimilate utilization in sink organs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jxb/erm135 | DOI Listing |
Planta
January 2009
Laboratorio de Bioquímica y Biotecnología, Area de Fisiología Vegetal, Departamento de Ciencias Agrarias y del Medio Natural, Escuela Superior de Tecnología y Ciencias Experimentales, Universitat Jaume I, 12071, Castellón de la Plana, Spain.
Citrus seedlings (Citrus sinensis L. Osbeck x Poncirus trifoliata Blanco) were used to describe the effects of different N treatments on the NH4+ influx mediated by high- and low-affinity transport systems (HATS and LATS, respectively) and CitAMT1 gene expression. Results show that Citrus plants favor NH4+ over NO3- influx mediated by HATS and LATS when both N sources are present in the nutrient solution and Citrus plants display a much higher capacity to take up NH4+ than NO3-.
View Article and Find Full Text PDFJ Exp Bot
January 2008
Area de Fisiología Vegetal, Departamento de Ciencias Agrarias y del Medio Natural, Escuela Superior de Tecnología y Ciencias Experimentales, Universitat Jaume I, E-12071 Castellón de la Plana, Spain.
Here the isolation and characterization of CitAMT1 cDNA from citrange Troyer (Citrus sinensis L. OsbeckxPoncirus trifoliata Blanco) is reported, suggesting that this belongs to the AMT gene family, which is involved in the high-affinity transport system (HATS). Results show that in Citrus plants, the HATS is much more dependent on the light conditions and C status of the roots than the low-affinity transport system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!