Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/jappl.1991.71.5.2059 | DOI Listing |
Sci Rep
January 2025
School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, UK.
Tropical peatlands are carbon-dense ecosystems that are significant sources of atmospheric methane (CH). Recent work has demonstrated the importance of trees as an emission pathway for CH from the peat to the atmosphere. However, there remain questions over the processes of CH production in these systems and how they relate to substrate supply.
View Article and Find Full Text PDFDalton Trans
January 2025
Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
Five new alkyl zinc complexes supported by different formylfluorenimide ligands were prepared and characterized. Complex 1 was obtained by the reaction of 9-[N(CH)-Cy-NCH]Fl (Cy = 2-cyclohexyl) (Fl = fluorenylL1 with diethylzinc (ZnEt) in tetrahydrofuran. Reacting 9-[2-pyridyl-CH-NCH]Fl L2 with ZnEt in tetrahydrofuran yielded complex 2.
View Article and Find Full Text PDFGlob Chang Biol
January 2025
Department of Soil Science of Temperate Ecosystems, Department of Agricultural Soil Science, University of Goettingen, Göttingen, Germany.
Carbon use efficiency (CUE) of microbial communities in soil quantifies the proportion of organic carbon (C) taken up by microorganisms that is allocated to growing microbial biomass as well as used for reparation of cell components. This C amount in microbial biomass is subsequently involved in microbial turnover, partly leading to microbial necromass formation, which can be further stabilized in soil. To unravel the underlying regulatory factors and spatial patterns of CUE on a large scale and across biomes (forests, grasslands, croplands), we evaluated 670 individual CUE data obtained by three commonly used approaches: (i) tracing of a substrate C by C (or C) incorporation into microbial biomass and respired CO (hereafter C-substrate), (ii) incorporation of O from water into DNA (O-water), and (iii) stoichiometric modelling based on the activities of enzymes responsible for C and nitrogen (N) cycles.
View Article and Find Full Text PDFACS Catal
October 2024
Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States.
A class of generated Lewis acid (LA) activated acridine complexes is reported, which act as potent photochemical catalysts for the oxidation of a variety of protected secondary amines. Acridine/LA complexes exhibit tunable excited state reduction potentials ranging from +2.07 to 2.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
January 2025
Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA, USA.
Exogenous glucose oxidation is reduced 55% during aerobic exercise after three days of complete starvation. Whether energy deficits more commonly experienced by athletes and military personnel similarly affect exogenous glucose oxidation and what impact this has on physical performance remains undetermined. This randomized, longitudinal parallel study aimed to assess the effects of varying magnitudes of energy deficit (DEF) on exogenous glucoseoxidation and physical performance compared to energy balance (BAL).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!