Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
C-repeat/dehydration-responsive element binding factors (CBF/DREBs) are a family of transcription factors that regulate freezing tolerance in Arabidopsis. As a step towards understanding the stress response of monocotyledonous plants, we isolated a barley gene HvCBF4 whose expression is induced by low-temperature stress. Transgenic over-expression of HvCBF4 in rice resulted in an increase in tolerance to drought, high-salinity and low-temperature stresses without stunting growth. Interestingly, under low-temperature conditions, the maximum photochemical efficiency of photosystem II in the dark-adapted state (F(v)/F(m), where F(v) is the variable fluorescence and F(m) is the maximum fluorescence) in HvCBF4 plants was higher by 20% and 10% than that in non-transgenic and CBF3/DREB1A plants, respectively. Using the 60K Rice Whole Genome microarray, 15 rice genes were identified that were activated by HvCBF4. When compared with 12 target rice genes of CBF3/DREB1A, five genes were common to both HvCBF4 and CBF3/DREB1A, and 10 and seven genes were specific to HvCBF4 and CBF3/DREB1A, respectively. Interestingly, HvCBF4 did not activate Dip1 and Lip5, two important target genes of CBF3/DREB1A, in transgenic rice under normal growth conditions, but their expression was enhanced by HvCBF4 under low-temperature conditions. Our results suggest that CBF/DREBs of barley act differently from those of Arabidopsis in transgenic rice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1467-7652.2007.00272.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!