A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Dihedral angle principal component analysis of molecular dynamics simulations. | LitMetric

Dihedral angle principal component analysis of molecular dynamics simulations.

J Chem Phys

Institute of Physical and Theoretical Chemistry, J. W. Goethe University, Max-von-Laue-Strasse 7, D-60438 Frankfurt, Germany.

Published: June 2007

It has recently been suggested by Mu et al. [Proteins 58, 45 (2005)] to use backbone dihedral angles instead of Cartesian coordinates in a principal component analysis of molecular dynamics simulations. Dihedral angles may be advantageous because internal coordinates naturally provide a correct separation of internal and overall motion, which was found to be essential for the construction and interpretation of the free energy landscape of a biomolecule undergoing large structural rearrangements. To account for the circular statistics of angular variables, a transformation from the space of dihedral angles {phi(n)} to the metric coordinate space {x(n)=cos phi(n),y(n)=sin phi(n)} was employed. To study the validity and the applicability of the approach, in this work the theoretical foundations underlying the dihedral angle principal component analysis (dPCA) are discussed. It is shown that the dPCA amounts to a one-to-one representation of the original angle distribution and that its principal components can readily be characterized by the corresponding conformational changes of the peptide. Furthermore, a complex version of the dPCA is introduced, in which N angular variables naturally lead to N eigenvalues and eigenvectors. Applying the methodology to the construction of the free energy landscape of decaalanine from a 300 ns molecular dynamics simulation, a critical comparison of the various methods is given.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.2746330DOI Listing

Publication Analysis

Top Keywords

principal component
12
component analysis
12
molecular dynamics
12
dihedral angles
12
dihedral angle
8
angle principal
8
analysis molecular
8
dynamics simulations
8
free energy
8
energy landscape
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!