Gas explosion caused by argon plasma coagulation of colonic angiodysplasias.

Endoscopy

Medizinische Klinik B, Ruppiner Kliniken, Neuruppin, Germany.

Published: February 2007

Download full-text PDF

Source
http://dx.doi.org/10.1055/s-2007-966404DOI Listing

Publication Analysis

Top Keywords

gas explosion
4
explosion caused
4
caused argon
4
argon plasma
4
plasma coagulation
4
coagulation colonic
4
colonic angiodysplasias
4
gas
1
caused
1
argon
1

Similar Publications

Coal mining industry is one of the main source for economy of every nations, whereas safety in the underground coal mining area is still doubtful. According to some reports, there is heavy loss of life and money due to the occasional accidents in the coal mining area. Some existing researchers has been addressed this issue and approached their method.

View Article and Find Full Text PDF

Uniaxial compression experiments were conducted on coal rock utilizing a computed tomography (CT) scanning system for real-time monitoring to explain the issue of gas volume significantly exceeding reservoir capacity during coal and gas outbursts. A percolation factor a which can make a significant contribution to the research on premonitory information of gas outbursts is introduced to determine whether percolation occurs in coal rock, and supports the outburst percolation theory. It was found that percolation probability and correlation length increase with greater porosity, and that the number of pore clusters decreases as porosity increases.

View Article and Find Full Text PDF

Hydrogen has emerged as a prominent candidate for future energy sources, garnering considerable attention. Given its explosive nature, the efficient detection of hydrogen (H) in the environment using H sensors is paramount. Chemoresistive H sensors, particularly those based on noble-metal-decorated metal oxide semiconductors (MOSs), have been extensively researched owing to their high responsiveness, low detection limits, and other favorable characteristics.

View Article and Find Full Text PDF

Smart oxygen monitoring in hospitals: a pilot study during COVID-19.

Sci Rep

January 2025

Department of Cybernetics and Biomedical Engineering, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, 70800, Ostrava, Czech Republic.

During 2020-2021, the COVID-19 pandemic exposed significant vulnerabilities in hospital safety, with oxygen-related fires and explosions occurring at twice the usual rate. This highlighted insufficient preparedness for increased oxygen therapy demands and the associated risks of oxygen-enriched atmospheres. This study aimed to develop and test a smart monitoring system to detect increased oxygen concentrations in hospital environments, mitigating the risk of fires.

View Article and Find Full Text PDF

Massive injection of C depleted carbon to the ocean and atmosphere coincided with major environmental upheaval multiple times in the geological record. For several events, the source of carbon has been attributed to explosive venting of gas produced when magmatic sills intruded organic-rich sediment. The concept mostly derives from studies of a few ancient sedimentary basins with numerous hydrothermal vent complexes (HTVCs) where craters appear to have formed across large areas of the seafloor at the same time, but good examples remain rare in strata younger than the Early Eocene.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!