The liver in congenital disorders of glycosylation: ultrastructural features.

Ultrastruct Pathol

Pediatric Research and Electron Microscopy Unit, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.

Published: August 2007

A new group of genetic diseases characterized by defective glycoprotein biosynthesis was recently described. Transferrin isoelectric focusing enabled identification of several types of patients with congenital disorders of glycosylation (CDG). The authors report on the liver involvement in two siblings with CDG type Ix presenting with failure to thrive and hypertransaminasemia who developed cardiomyopathy. In the initially affected infant, liver biopsy at 13 months of age showed increased periportal cellularity, steatosis, and mild fibrosis. Ultrastructurally, the hepatocytes displayed numerous myelinosomes, mostly with a pericanalicular polarization. No myelinosomes were seen in the bile canaliculi, Kupffer cells, and sinusoidal lining cells. Focal large droplet steatosis was also noticed. These ultrastructural findings represent another diagnostic element in this heterogenic group of conditions. Electron microscopy can contribute to the elucidation of hypertransaminasemia and differentiate some types of CDG from other lysosomal diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1080/01913120701348286DOI Listing

Publication Analysis

Top Keywords

congenital disorders
8
disorders glycosylation
8
liver congenital
4
glycosylation ultrastructural
4
ultrastructural features
4
features group
4
group genetic
4
genetic diseases
4
diseases characterized
4
characterized defective
4

Similar Publications

Effects of Elexacaftor-Tezacaftor-Ivacaftor on Nasal and Sinus Symptoms in Children With Cystic Fibrosis.

Pediatr Pulmonol

January 2025

Hôpital Femme Mère Enfant, Hospices Civils de Lyon, 59 Boulevard Pinel, Lyon, France.

Background: New CFTR Modulator triple therapy Elexacaftor-Ivacaftor-Tezacaftor (ETI) prove efficacy in pulmonary outcomes. However, its impact on nasal sinus symptoms in children has not been specifically studied. The aim of this study is to evaluate the impact of this therapy on nasal sinus symptomatology in children aged 6-12 years.

View Article and Find Full Text PDF

"It's Like You're Feeding Your Child Twice": Barriers and Facilitators to Human Milk Feeding Children With Cystic Fibrosis.

Pediatr Pulmonol

January 2025

Department of Pediatrics, Division of Pulmonary, Allergy/Immunology, Cystic Fibrosis and Sleep, Emory University, Atlanta, Georgia, USA.

Background: Cystic Fibrosis Foundation guidelines recommend human milk (HM) as the ideal source of nutrition for children with CF (cwCF). Despite known pulmonary and nutritional benefits, fewer cwCF ever receive HM compared to the general population. Early nutrition choices are preference-sensitive, yet little is known about the factors that impede or sustain HM feeding among parents of cwCF.

View Article and Find Full Text PDF

Aims: Alexander disease (AxD) is a leukodystrophy caused by mutations in the astrocytic filament gene GFAP. There are currently no effective treatments for AxD. Previous studies have rarely established AxD models with the patient's original GFAP mutations.

View Article and Find Full Text PDF

TBC1D20 coordinates vesicle transport and actin remodeling to regulate ciliogenesis.

J Cell Biol

April 2025

Department of Genetics and Cell Biology, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.

TBC1D20 deficiency causes Warburg Micro Syndrome in humans, characterized by multiple eye abnormalities, severe intellectual disability, and abnormal sexual development, but the molecular mechanisms remain unknown. Here, we identify TBC1D20 as a novel Rab11 GTPase-activating protein that coordinates vesicle transport and actin remodeling to regulate ciliogenesis. Depletion of TBC1D20 promotes Rab11 vesicle accumulation and actin deconstruction around the centrosome, facilitating the initiation of ciliogenesis even in cycling cells.

View Article and Find Full Text PDF

MYRF Variants in Patients With 46,XY Differences/Disorders of Sex Development and Literature Review.

Am J Med Genet A

January 2025

NHC Key Laboratory of Endocrinology (Peking Union Medical College Hospital), Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.

46,XY differences/disorders of sex development (DSD) are genetically heterogeneous conditions characterized by atypical development of the reproductive system. MYRF, a gene encoding a transcription factor, has been identified as a potential causative gene for DSD and cardiac urogenital syndrome (CUGS). This study aims to delineate the clinical manifestations of patients with 46,XY DSD and MYRF mutations, encompassing both from our cohort and cases reported in the literature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!