The objectives of the present investigation were to prepare and characterize starch acetate (SA) with high degree of substitution (dS) and to study its prospect as film-forming agent in a controlled-release multiparticulate drug delivery system. As a part of the development process by quality by design, the objectives also included identification of critical formulation and process variables that affect the release of a drug. SA, a relatively new polymer, was characterized because it showed good film-forming properties. SA with dS 2.9 was synthesized from corn starch by paste disruption technique. It was compared with the raw material, starch, by Fourier transform infrared spectroscopy, X-ray diffraction, and molecular mass analysis. Viscosity of SA solution increased logarithmically with the polymer concentration. At higher polymer concentrations (1.5-5.0%), the solutions showed pseudoplastic behavior. Among the plasticizers tested, triacetin and triethyl citrate yielded free films with acceptable mechanical properties. The glass transition temperature (Tg) of the films could be well controlled by these plasticizers. Unplasticized film showed a Tg of 31.8 degrees C. A trend was found that increase in triacetin concentration in SA films resulted in increase in permeability coefficient for tritiated water. Scanning electron microscopic photographs showed a clear and smooth plasticized film compared to rough unplasticized film. Dyphylline-loaded beads were coated with highly substituted SA to evaluate the main effects of the formulation and process variables on the release of the drug and to figure out the reliability of the screening design. A seven-factor, twelve-run Plackett-Burman screening design was used. The response variables were cumulative percent of drug released in 0.5, 1, 4, 8, and 12 hr. Quantitative evaluation of the design revealed that coating weight gain, plasticizer concentration, and post-drying temperature had greater influence on the drug release than the others. The main effects on drug release after 12 hr decreased in the following order: coating weight gain (-7.81), plasticizer concentration (4.96), postdrying temperature (-2.51), SA concentration (-0.80), inlet temperature (0.51), postdrying time (-0.31), and atomizing pressure (-0.28).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10837450701247483 | DOI Listing |
Clin Chem Lab Med
January 2025
School of Dentistry and Medical Science, Faculty of Science and Health, 110481 Charles Sturt University, Wagga Wagga, NSW, Australia.
This scoping review focuses on the evolution of pre-analytical errors (PAEs) in medical laboratories, a critical area with significant implications for patient care, healthcare costs, hospital length of stay, and operational efficiency. The Covidence Review tool was used to formulate the keywords, and then a comprehensive literature search was performed using several databases, importing the search results directly into Covidence (n=379). Title, abstract screening, duplicate removal, and full-text screening were done.
View Article and Find Full Text PDFJ Sci Food Agric
January 2025
Department of Food Engineering and Technology, Tezpur University, Tezpur, India.
Background: Incorporating β-carotene into food systems improves nutritional value by providing a natural source of vitamin A. However, maintaining its stability during processing and storage is a significant barrier for its bioavailability.
Results: This study investigated the utilization of banana rachis nanocellulose (BRNC) as a natural stabilizer in the formulation of Pickering nanoemulsion (PNE).
J Food Sci Technol
February 2025
Department of Food Process Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu 603203 India.
Unlabelled: Catechin hydrate (CH) is a kind of polyphenol present in many plantsincluding green tea, fruits, red wine and cocoa with very good antioxidant effect. The formulation of CH nanoemulsion increased the bioavailability and stability of catechin, allowing for easier food incorporation and faster absorption by the body. The major goal of the current study was to create a nanoemulsion as a reliable delivery mechanism for catechin hydrate and its incorporation into yogurt to increase its antioxidant activity.
View Article and Find Full Text PDFJ Food Sci Technol
February 2025
Dept. of Food Processing Tech. A. D. Patel Institute of Technology, Charutar Vidya Mandal University, New Vallabh Vidyanagar, Anand, Gujarat India.
Unlabelled: A huge amount of fruits and vegetables is being produced and processed in India and therefore the waste is also generated in high quantities. These wastes are good sources of vitamins, enzymes, cellulose, and many other essential compounds. The non-utilization of these bio-wastes leads to economic loss and also environmental problems.
View Article and Find Full Text PDFJ Food Sci Technol
February 2025
Department of Food Processing and Quality Control, Stella Maris College (Autonomous), Chennai, Tamilnadu India.
Pharmaceutical supplementation and dietary fortification are the most common approaches to reducing vitamin deficits. To improve the health and nutritional value of crops, agronomic biofortification necessitates the direct application of nutrients. Producers using micronutrient fertilizers to increase the fortification of crops are essential to the success of biofortification.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!