The purpose of this study was to investigate the effects of cations and anions of various electrolytes on the glass transition temperature (Tg') of frozen solutions of excipients commonly used in freeze-drying. The effect of electrolyte concentration on freezable water content was also investigated by measuring the enthalpy of melting (DeltaH) using Differential Scanning Calorimetry (DSC). Cations and anions induce changes in Tg' of frozen solutions of commonly used parenteral excipients. These changes are dependent on the properties of the excipients used. Tg' values of 5% w/v solutions of maltose, trehalose, sucrose, dextran 40, and polyvinylpyrrolidone (PVP, 17K) were determined as a function of sodium chloride (NaCl) or potassium chloride (KCl) concentrations. In general, a significant decrease in Tg' was observed as a function of increasing the electrolyte concentration. For the disaccharide solutions, the decrease in Tg' due to the addition of NaCl or KCl was similar in magnitude, indicating that changing the cation from K+ to Na+ had no effect on Tg'. However, the decrease in Tg' for the PVP solution due to the addition of KCl was greater than that observed by the addition of NaCl . The differences in the electrolyte-induced changes on Tg' between the disaccharides and PVP may be potentially attributed to the formation of complexes between the cations and the properly oriented hydroxyl groups in the sugars leaving the anions (Cl- ions) to exert their effect on Tg'. While zero cation effect would be consistent with these results for the disaccharides, these results do not mean that the cation effects are zero; they only mean that the cation effects are the same. For the PVP solution, K+ and Na+ ions are not engaged in complex formation with PVP due to the lack of hydroxyl groups. We hypothesize that the structure-breaking K+ ions increase the fluidity of water and exert a greater plasticizing effect on Tg', leading to a more significant decrease in Tg' than the structure-making Na+ ions, which increase the viscosity of water. The decrease in Tg' of frozen solutions of pharmaceutical excipients caused by the addition of electrolytes may be primarily attributed to an increase in the unfrozen plasticizing water surrounding the excipient molecules. Formulation scientists should evaluate the use of electrolytes in the formulation development of lyophilized products containing commonly used excipients. Electrolytes are often needed as stabilizers for protein formulations; however, their selection and use should be properly evaluated. Because electrolytes cause a decrease in Tg' as a function of electrolyte concentration, it is recommended that the minimum electrolyte concentration needed to maintain product stability should be used to minimize the effect of the electrolyte on lowering the Tg'.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10837450701212826 | DOI Listing |
Poult Sci
January 2025
College of Animal Science, Zhejiang University, Hangzhou 310058, China. Electronic address:
The present study investigated the impact of butyrate glycerides (BG) on lipid metabolism, intestinal morphology, and microbiota of laying hens. Four hundred eighty 54-week-old Hy-line Brown laying hens were randomly selected and divided into five groups. The control group (ND) was fed a basal diet.
View Article and Find Full Text PDFNutrients
January 2025
Department of Food & Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea.
Background/objectives: The pathogenesis of metabolic dysfunction-associated steatohepatitis (MASH) is closely associated with increased oxidative stress and lipid peroxidation. Coenzyme Q (CoQ) and selenium (Se) are well-established antioxidants with protective effects against oxidative damage. This study aimed to investigate the effects of CoQ and Se in ameliorating MASH induced by a methionine choline-deficient (MCD) diet in mice.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Faculty of Science and Industrial Technology, Prince of Songkla University, Surat Thani Campus, Surat Thani 84000, Thailand.
This research examines the possibility of palm oil and oil palm trunk biochar (OPTB) from pyrolysis effectively serving as alternative processing oils and fillers, substituting petroleum-based counterparts in natural rubber (NR) composites. Chemical, elemental, surface and morphological analyses were used to characterize both carbon black (CB) and OPTB, by using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) gas porosimetry, and scanning electron microscopy (SEM). The influences of OPTB contents from 0 to 100 parts per hundred rubber (phr) on thermal, dielectric, dynamic mechanical, and cure characteristics, and the key mechanical properties of particulate NR-composites were investigated.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Key Laboratory for Advanced Coal and Coking Technology of Liaoning Province, University of Science and Technology Liaoning, Anshan 114051, China.
In this study, the mechanisms of SO adsorption on lignite char and char-supported Fe-Zn-Cu sorbent (FZC sorbent) were investigated. The FZC sorbent was prepared by the impregnation of metal components on raw coal followed by steam gasification. Flue gas desulfurization experiments were carried out on a fixed-bed reactor at 100-300 °C by using simulated flue gas containing SO/O/HO balanced by N.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan.
Bisphenol A (BPA) is a prevalent environmental contaminant found in plastics and known for its endocrine-disrupting properties, posing risks to both human health and the environment. Despite its widespread presence, the impact of BPA on papillary thyroid cancer (PTC) progression, especially under realistic environmental conditions, is not well understood. This study examined the effects of BPA on PTC using a 3D thyroid papillary tumor spheroid model, which better mimicked the complex interactions within human tissues compared to traditional 2D models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!