Background: C-reactive protein (CRP), a pentamer composed of five identical 23-kd subunits, is a member of a highly conserved family of proteins known as pentraxins. CRP has been recognized as a risk factor for the development of both the native and transplant-associated forms of atherosclerosis. Understanding the biology of CRP may be relevant to understanding atherosclerosis development and progression.

Methods: Using Western-blotting techniques, we examined the interactions between native, monomeric and mutationally and chemically modified CRP and a variety of antibodies, monoclonal and polyclonal.

Results: CRP in its denatured monomeric form, but not in its native pentameric conformation, associates promiscuously with IgG molecules, including normal human IgG, as well as with a number of other proteins. This behavior is intrinsic to CRP and is not noted with other pentraxins such as serum amyloid P component or the long pentraxin, PTX3. Monomeric CRP co-localizes with vitronectin in human heart tissue sections.

Conclusions: We present these findings as cautionary advice, to indicate that characterization of monomeric CRP can be complicated by the propensity of the molecule to interact with a variety of immunoglobulins and other proteins. We also suggest that it is possible that such interactions could serve to eliminate excess of monomeric CRP and/or to scavenge altered, damaged and denatured proteins. These reactivities may be part of a regulatory mechanism to limit inflammation in the arterial wall.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.healun.2007.04.006DOI Listing

Publication Analysis

Top Keywords

monomeric crp
12
crp
9
c-reactive protein
8
monomeric
5
conduct unbecoming
4
unbecoming c-reactive
4
protein interactions
4
interactions broad
4
broad range
4
range protein
4

Similar Publications

Background: C-reactive protein (CRP) represents a routine diagnostic marker of inflammation. Dissociation of native pentameric CRP (pCRP) into the monomeric structure (mCRP) liberates proinflammatory features, presumably contributing to excessive immune cell activation via unknown molecular mechanisms.

Results: In a multi-translational study of systemic inflammation, we found a time- and inflammation-dependent pCRP dissociation into mCRP.

View Article and Find Full Text PDF

Purpose: Choroidal inflammation, complement deposition, and accumulation of C-reactive protein (CRP) are involved in age-related macular degeneration (AMD) pathology. The pro-inflammatory signals that regulate immune cell recruitment in the choroid of patients with AMD remain to be determined. We performed cytokine profiling of human AMD and age-matched control donor tissue to identify inflammatory molecules upregulated in AMD tissue.

View Article and Find Full Text PDF

Purpose: Existing biomarkers including C-reactive protein (CRP) do not adequately distinguish active and inactive TAK. We compared serum p-glycoprotein (p-gp)/Multidrug Resistance Protein 1 (MDR1), monomeric CRP (mCRP), CRP, and mCRP:CRP ratio in Takayasu arteritis (TAK) and healthy controls and their relationship with disease activity.

Patients And Methods: Serum p-gp mCRP (ELISA) and CRP (nephelometry) were compared between consecutive adults with TAK (>18 years) enrolled from a prospective cohort (n = 92) and healthy controls (n = 29), and between active vs inactive TAK (n = 46 each).

View Article and Find Full Text PDF

Shear-Sensing by C-Reactive Protein: Linking Aortic Stenosis and Inflammation.

Circ Res

November 2024

Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (J.Z., J.L.-S., S.B., A.L., A.R., A. Watson, N.D., P.S., A.B.-W., Y.C.C., M.M., M.L.P.V., A.H., N.M.H., X.W., G.P., J.D.M., K.P.).

Background: CRP (C-reactive protein) is a prototypical acute phase reactant. Upon dissociation of the pentameric isoform (pCRP [pentameric CRP]) into its monomeric subunits (mCRP [monomeric CRP]), it exhibits prothrombotic and proinflammatory activity. Pathophysiological shear rates as observed in aortic valve stenosis (AS) can influence protein conformation and function as observed with vWF (von Willebrand factor).

View Article and Find Full Text PDF

C-Reactive Protein, the Gliovascular Unit, and Alzheimer's Disease.

Cureus

August 2024

Center for Advanced Medical and Pharmaceutical Research, The George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, Târgu Mureș, ROU.

Alzheimer's disease (AD) pathogenesis is conditioned by the presence of amyloid beta (Aβ) and neuroinflammation. The gliovascular unit (GVU) illustrates the relationship between the vascular components of the brain and glial cells, particularly astrocytes, which are seen as critical elements mainly affected in this disease. In AD patients, the impairment of the GVU is seen as blood-brain barrier breakdown, decreased clearance of Aβ, and chronic inflammatory status.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!