Purpose: By allowing the visualization of the proteins inside cells, the immunofluorescence technique has revolutionized our view of events that follow radiation response. Particularly, the formation of nuclear foci, their kinetic of appearance and disappearance, and the association-dissociation of protein partners are useful endpoints to better understand the effects of ionizing radiation. Recently, the technique based on the phosphorylation of the histone 2A family, member X (H2AX) has generated a plethora of reports concerning the interaction between the major proteins involved in DNA repair and stress signaling pathways. However, some unavoidable overlaps of excitation and emission wavelength spectra (the so-called bleed-through phenomenon) of the available fluorescent markers are still generating discrepancies and misinterpretations in the choreography of DNA damage response. Biases are particularly strong with the fluorescein isothiocyanate (FITC)-rhodamine couple, tetramethyl rhodamine iso-thiocyanate (TRITC), the most extensively used markers.

Method And Results: Here, two representative examples of biased co-immunofluorescence with pH2AX proteins that form radiation-induced nuclear foci or not are presented. A brief review of literature points out differences in kinetic of appearance and association-dissociation of radiation-induced pH2AX and MRE11 foci.

Conclusion: Through this report, we would like authors to consider more carefully protein co-localizations by performing systematically, before any co-immunofluorescence, immunofluorescence of each protein separately to avoid bleed-through artifacts.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09553000701436810DOI Listing

Publication Analysis

Top Keywords

nuclear foci
12
bleed-through phenomenon
8
radiation-induced nuclear
8
kinetic appearance
8
consequences bleed-through
4
phenomenon immunofluorescence
4
proteins
4
immunofluorescence proteins
4
proteins forming
4
forming radiation-induced
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!