Cytochrome P450 (P450) enzymes oxidize xenobiotics into chemically reactive metabolites or intermediates as well as into stable metabolites. If the reactivity of the product is very high, it binds to a catalytic site or sites of the enzyme itself and inactivates it. This phenomenon is referred to as mechanism-based inactivation. Many clinically important drugs are mechanism-based inactivators that include macrolide antibiotics, calcium channel blockers, and selective serotonin uptake inhibitors, but are not always structurally and pharmacologically related. The inactivation of P450s during drug therapy results in serious drug interactions, since irreversibility of the binding allows enzyme inhibition to be prolonged after elimination of the causal drug. The inhibition of the metabolism of drugs with narrow therapeutic indexes, such as terfenadine and astemizole, leads to toxicities. On the other hand, the fate of P450s after the inactivation and the toxicological consequences remains to be elucidated, while it has been suggested that P450s modified and degraded are involved in some forms of tissue toxicity. Porphyrinogenic drugs, such as griseofulvin, cause mechanism-based heme inactivation, leading to formation of ferrochelatase-inhibitory N-alkylated protoporphyrins and resulting in porphyria. Involvement of P450-derived free heme in halothane-induced hepatotoxicity and catalytic iron in cisplatin-induced nephrotoxicity has also been suggested. Autoantibodies against P450s have been found in hepatitis following administration of tienilic acid and dihydralazine. Tienilic acid is activated by and covalently bound to CYP2C9, and the neoantigens thus formed activate immune systems, resulting in the formation of an autoantibodydirected against CYP2C9, named anti-liver/kidney microsomal autoantibody type 2, whereas the pathological role of the autoantibodies in drug-induced hepatitis remains largely unknown.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10408440701215233 | DOI Listing |
J Clin Invest
December 2024
Department of Pharmacology and Therapeutics, College of Pharmacy, University of Florida, Gainesville, United States of America.
Biochemistry
December 2024
School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China.
Berberrubine (BRB), belonging to the benzylisoquinoline alkaloid, is a main metabolite of berberine . BRB was previously proven to undergo metabolic activation mediated by P450s. In this study, the chemical interactions between BRB and CYP2D6 enzyme were investigated.
View Article and Find Full Text PDFCurr Microbiol
November 2024
Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, Tamil Nadu, 603 203, India.
The rapid emergence of drug-resistant fungal strains necessitates the development of novel therapeutic approaches for battling biofilm-related infections. Biofilms, efflux pumps, and suppression of virulence traits in pathogenic yeasts are governed by epigenetic enzymes, namely, histone acetyltransferases (HATs) and histone deacetylases (HDACs). The review article is focused on the use of histone acetyltransferase inhibitors (HATi), a mechanism-based epidrug that inactivates the regular function of HATs.
View Article and Find Full Text PDFBioorg Med Chem Lett
January 2025
Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, DK-2100 Copenhagen, Denmark. Electronic address:
Sirtuin 5 (SIRT5) is a lysine deacylase enzyme that cleaves negatively charged ε-N-acyllysine posttranslational modifications, arising from short dicarboxylic acids. Inhibition of SIRT5 has been suggested as a target for treatment of leukemia and breast cancer. In this work, we performed a focused structure-activity relationship study that identified highly potent inhibitors of SIRT5.
View Article and Find Full Text PDFDrug Metab Dispos
October 2024
Lilly Research Laboratories, Eli Lilly and Company, United States.
Predictions of drug-drug interactions resulting from time-dependent inhibition (TDI) of CYP3A4 have consistently overestimated or mis-predicted (i.e. false positives) the interaction that is observed in vivo.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!