Consistently at Superfund and other contaminated terrestrial sites, ecological receptors have been chemically exposed for multiple decades by the time risk assessments are conducted. Given that numerous generations of the receptors have lived through the contaminated site condition by the present day, a paradigm shift from risk assessment, where the potential for health effects are forecasted, to a direct, health status assessment scheme for the site-exposed receptor, would seem to be most appropriate. We applied the only such existing direct health status assessment method, Rodent Sperm Analysis (RSA), with small rodents trapped at contaminated sites and at matched noncontaminated reference locations. Reproductive health, ecological risk assessment's endpoint of greatest concern, is targeted with RSA by comparing the sperm parameters of count, motility, and morphology, for each of which it is known how much of a change from a control condition signifies compromised reproductive capability. Given that sperm parameter thresholds were not exceeded in maximally exposed receptors, the data suggest that in the general case, contaminated terrestrial sites do not need cleanups to afford health protection to ecological species, and particularly the larger, wider-ranging, higher trophic level species. Our findings suggest that RSA has the ability to consistently discriminate between clean and contaminated sites, and that the method can allow for as definitive determinations of terrestrial ecological receptor health as are possible, thereby facilitating early site clean-up decisions.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00244-006-0169-1DOI Listing

Publication Analysis

Top Keywords

contaminated sites
12
ecological receptor
8
receptor health
8
rodent sperm
8
sperm parameters
8
contaminated terrestrial
8
terrestrial sites
8
direct health
8
health status
8
status assessment
8

Similar Publications

E-waste, a global environmental concern, particularly affects developing nations due to the rise in informal recycling practices. This leads to contamination of environmental matrices, posing threats to both ecosystems and human health. To assess this issue, we monitored brominated flame retardants (BFRs) in 164 samples (soil) from 32 informal e-waste operational locations and 9 background locations across nine mega cities of Pakistan from September 2020 to December 2021.

View Article and Find Full Text PDF

Occurrence and distribution of brominated and fluorinated persistent organic pollutants in surface sediments focusing on industrially affected rivers.

Chemosphere

January 2025

Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea; Institute for Environment and Energy, Pusan National University, Busan, 46241, Republic of Korea. Electronic address:

This study investigated legacy persistent organic pollutants, including polybrominated diphenyl ethers (PBDEs), hexabromocyclododecanes (HBCDs), and per- and polyfluoroalkyl substances (PFAS), as well as their alternatives, in sediments from five major rivers, to assess their contamination status and usage patterns. The concentration levels of ΣPBDEs (median 9.98 ng/g dry weight (dw), mean 190 ng/g dw), ΣHBCDs (median 9.

View Article and Find Full Text PDF

Enhanced treatment of multiphase extraction wastewater from contaminated sites with Cu-Ce modified GAC three-dimensional electrodes.

J Environ Manage

January 2025

State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China. Electronic address:

A three-dimensional (3D) electrode system is widely recognized as an effective technology for enhancing electrocatalytic effect. In this study, Cu-Ce modified granular activated carbon (GAC) particle electrodes were prepared using the impregnation method and applied to handle multiphase extraction wastewater. Structural and electrochemical characterization revealed that while the specific surface area of Cu-Ce/GAC decreased by 13.

View Article and Find Full Text PDF

Economic development, marine transportation, and oil exploration are all activities that are increasing in the Arctic region, and there is concern regarding increased oil-related contaminants entering this sensitive environment. Polycyclic aromatic compounds (PACs) are the main chemical constituents in oil-related contaminants and have been detected in wildlife species following both acute and chronic exposure. In 2020, an oil spill occurred in Kaikopok Bay near Postville, NL, Canada.

View Article and Find Full Text PDF

Electrochemical destruction of PFAS at low oxidation potential enabled by CeO electrodes utilizing adsorption and activation strategies.

J Hazard Mater

December 2024

School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen 518055, PR China. Electronic address:

The persistence and ecological impact of per- and poly-fluoroalkyl substances (PFAS) in water sources necessitate effective and energy-efficient treatment solutions. This study introduces a novel approach using cerium dioxide (CeO) electrodes enhanced with oxygen vacancy (O) to catalyze the defluorination of PFAS. By leveraging the unique affinity between cerium and fluorine-containing species, our approach enables adsorptive preconcentration and catalytic degradation at low oxidation potentials (1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!