Electron-induced chemistry of alcohols.

Phys Chem Chem Phys

Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700, Fribourg, Switzerland.

Published: June 2007

We studied dissociative electron attachment to a series of compounds with one or two hydroxyl groups. For the monoalcohols we found, apart from the known fragmentations in the 6-12 eV range proceeding via Feshbach resonances, also new weaker processes at lower energies, around 3 eV. They have a steep onset at the dissociation threshold and show a dramatic D/H isotope effect. We assigned them as proceeding via shape resonances with temporary occupation of sigma orbitals. These low energy fragmentations become much stronger in the larger molecules and the strongest DEA process in the compounds with two hydroxyl groups, which thus represent an intermediate case between the behavior of small alcohols and the sugar ribose which was discovered to have strong DEA fragmentations near zero electron energy [S. Ptasińska, S. Denifl, P. Scheier and T. D. Märk, J. Chem. Phys., 2004, 120, 8505]. Above 6 eV, in the Feshbach resonance regime, the dominant process is a fast loss of a hydrogen atom from the hydroxyl group. In some cases the resulting (M- 1)(-) anion (loss of hydrogen atom) is sufficiently energy-rich to further dissociate by loss of stable, closed shell molecules like H(2) or ethene. The fast primary process is state- and site selective in several cases, the negative ion states with a hole in the n(O) orbital losing the OH hydrogen, those with a hole in the sigma(C-H) orbitals the alkyl hydrogen.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b704656aDOI Listing

Publication Analysis

Top Keywords

compounds hydroxyl
8
hydroxyl groups
8
loss hydrogen
8
hydrogen atom
8
electron-induced chemistry
4
chemistry alcohols
4
alcohols studied
4
studied dissociative
4
dissociative electron
4
electron attachment
4

Similar Publications

Ligand-based cheminformatics and free energy-inspired molecular simulations for prioritizing and optimizing G-protein coupled receptor kinase-6 (GRK6) inhibitors in multiple myeloma treatment.

Comput Biol Chem

January 2025

Drug Discovery and Development Laboratory (DDD Lab), Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India. Electronic address:

Multiple myeloma (MM) is the second most frequently diagnosed hematological malignancy, presenting limited treatment options with no curative potential and significant drug resistance. Recent studies involving genetic knockdown established the crucial role of GRK6 in upholding the viability of MM cells, emphasizing the need to identify potential inhibitors. Computational exploration of GRK6 inhibitors has not been attempted previously.

View Article and Find Full Text PDF

The extent of coordination-induced bond weakening in aquo and hydroxo ligands bonded to a molybdenum(III) center complexed by a dianionic, pentadentate ligand system was probed by reacting the known complex (BPzPy)Mo(III)-NTf, , with degassed water or dry lithium hydroxide. The aquo adduct was not observed, but two LiNTf-stabilized hydroxo complexes were fully characterized. Computational and experimental work showed that the O-H bond in these complexes was significantly weakened (to ≈57 kcal mol), such that these compounds could be used to form the diamagnetic, neutral terminal molybdenum oxo complex (BPzPy)Mo(IV)O, , by hydrogen atom abstraction using the aryl oxyl reagent ArO• (Ar = 2,4,6-tri--butylphenyl).

View Article and Find Full Text PDF

Probing the Photochemical Formation of Hydroxyl Radical from Dissolved Organic Matter: Insights into the HO-Dependent Pathway.

Environ Sci Technol

January 2025

Zachry Department of Civil & Environmental Engineering, Texas A&M University, College Station, Texas 77843, United States.

This study quantifies the contribution of the HO-dependent pathway to hydroxyl radical (OH) production from the photolysis of dissolved organic matter (DOM). OH formation rates were cross-validated using benzoate and terephthalate as probe compounds for diverse DOM sources (reference isolates and whole waters). Catalase addition revealed that the HO-dependent pathway accounts for 10-20% of the total OH production in DOM isolate materials, but no significant correlation was observed between ambient iron (Fe) concentrations and HO-dependent OH formation.

View Article and Find Full Text PDF

Molecular Mechanism for the Unprecedented Metal-Independent Hydroxyl Radical Production from Thioureas and HO.

Environ Sci Technol

January 2025

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.

The most well-known hydroxyl radical (OH)-generating system is the classic iron-mediated Fenton reaction. Thiourea has been considered as an efficient OH scavenger and is frequently used to study the role of OH in various biochemical and medical research studies. Here we found that the highly reactive OH can be produced from thiourea and HO through a metal-independent pathway, as measured by electron spin resonance (ESR) secondary radical spin-trapping and fluorescent methods.

View Article and Find Full Text PDF

Identification and structural characterization of glucosylceramides in Holothuria (Halodeima) grisea: Insights from TLC and NMR techniques.

Carbohydr Res

January 2025

Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, 81531-990, Curitiba, PR, Brazil. Electronic address:

Sea cucumbers are widely used in oriental cuisine due to their medicinal properties. Antioxidant, antifungal, antiviral, anticancer and neuroprotective activities have already been identified in several species and in different tissues. Among the class of compounds with biological activity are cerebrosides, which have important functions for the proper functioning of cells, especially neuronal cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!