Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Using genome-wide approaches, we have elucidated the regulatory circuitry governed by the XBP1 transcription factor, a key effector of the mammalian unfolded protein response (UPR), in skeletal muscle and secretory cells. We identified a core group of genes involved in constitutive maintenance of ER function in all cell types and tissue- and condition-specific targets. In addition, we identified a cadre of unexpected targets that link XBP1 to neurodegenerative and myodegenerative diseases, as well as to DNA damage and repair pathways. Remarkably, we found that XBP1 regulates functionally distinct targets through different sequence motifs. Further, we identified Mist1, a critical regulator of differentiation, as an important target of XBP1, providing an explanation for developmental defects associated with XBP1 loss of function. Our results provide a detailed picture of the regulatory roadmap governed by XBP1 in distinct cell types as well as insight into unexplored functions of XBP1.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.molcel.2007.06.011 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!