Substrate-enhanced microbial fuel cells for improved remote power generation from sediment-based systems.

Environ Sci Technol

Department of Agricultural and Biological Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.

Published: June 2007

A sediment microbial fuel cell (MFC) produces electricity through the bacterial oxidation of organic matter contained in the sediment. The power density is limited, however, due in part to the low organic matter content of most marine sediments. To increase power generation from these devices, particulate substrates were added to the anode compartment. Three materials were tested: two commercially available chitin products differing in particle size and biodegradability (Chitin 20 and Chitin 80) and cellulose powder. Maximum power densities using chitin in this substrate-enhanced sediment MFC (SEM) were 76 +/- 25 and 84 +/- 10 mW/m2 (normalized to cathode projected surface area) for Chitin 20 and Chitin 80, respectively, versus less than 2 mW/m2 for an unamended control. Power generation over a 10 day period averaged 64 +/- 27 mW/ m2 (Chitin 20) and 76 +/- 15 mW/m2 (Chitin 80). With cellulose, a similar maximum power was initially generated (83 +/- 3 mW/m2), but power rapidly decreased after only 20 h. Maximum power densities over the next 5 days varied substantially among replicate cellulose-fed reactors, ranging from 29 +/- 12 to 62 +/- 23 mW/m2. These results suggest a new approach to power generation in remote areas based on the use of particulate substrates. While the longevity of the SEM was relatively short in these studies, it is possible to increase operation times by controlling particle size, mass, and type of material needed to achieve desired power levels that could theoretically be sustained over periods of years or even decades.

Download full-text PDF

Source
http://dx.doi.org/10.1021/es070426eDOI Listing

Publication Analysis

Top Keywords

power generation
16
+/- mw/m2
16
maximum power
12
power
10
microbial fuel
8
organic matter
8
particulate substrates
8
chitin
8
particle size
8
chitin chitin
8

Similar Publications

Gender equality and women's empowerment have been increasingly emphasised in food production systems, including fisheries and aquaculture. Accurate assessment and understanding of the state, progress and changes in women's empowerment in the sub-sectors is required. We applied the project level Women's Empowerment in Fisheries and Aquaculture Index (pro-WEFI), which is based on the project-level women's empowerment in agriculture index (pro-WEAI) to standardize the measurement of women's agency and empowerment in fisheries and aquaculture.

View Article and Find Full Text PDF

Odours released by objects in natural environments can contain information about their spatial locations. In particular, the correlation of odour concentration timeseries produced by two spatially separated sources contains information about the distance between the sources. For example, mice are able to distinguish correlated and anti-correlated odour fluctuations at frequencies up to 40 Hz, while insect olfactory receptor neurons can resolve fluctuations exceeding 100 Hz.

View Article and Find Full Text PDF

Skin-Integrated Electrogenetic Regulation of Vasculature for Accelerated Wound Healing.

Adv Sci (Weinh)

January 2025

ETH Zurich, Department of Biosystems Science and Engineering, Klingelbergstrasse 48, Basel, CH-4056, Switzerland.

Neo-vascularization plays a key role in achieving long-term viability of engineered cells contained in medical implants used in precision medicine. Moreover, strategies to promote neo-vascularization around medical implants may also be useful to promote the healing of deep wounds. In this context, a biocompatible, electroconductive borophene-poly(ε-caprolactone) (PCL) 3D platform is developed, which is called VOLT, to support designer cells engineered with a direct-current (DC) voltage-controlled gene circuit that drives secretion of vascular endothelial growth factor A (VEGFA).

View Article and Find Full Text PDF

Continuous-wave perovskite polariton lasers.

Sci Adv

January 2025

State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310027, China.

Solution-processed semiconductor lasers are next-generation light sources for large-scale, bio-compatible and integrated photonics. However, overcoming their performance-cost trade-off to rival III-V laser functionalities is a long-standing challenge. Here, we demonstrate room-temperature continuous-wave perovskite polariton lasers exhibiting remarkably low thresholds of ~0.

View Article and Find Full Text PDF

Protonic ceramic electrochemical cells (PCECs) can operate at intermediate temperatures (450° to 600°C) for power generation and hydrogen production. However, the operating temperature is still too high to revolutionize ceramic electrochemical cell technology. Lowering the operating temperature to <450°C will enable a wider material choice and reduce system costs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!