Large-scale production of recombinant spider silk proteins is a long-term goal for their industrial use. Therefore, we have recently developed a process for bacterial production. Due to a highly repetitive gene sequence of spider silks, the host strain E. coli BLR(DE3) was employed since it shows no homologue recombination. Although perfectly suited for production in full media, the BLR strain does not grow in cost-effective minimal media, indicating a previously not reported L: -isoleucine auxotrophy. We provide evidence that mutated threonine deaminase is likely responsible for the detected auxotrophy of BLR.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10529-007-9461-zDOI Listing

Publication Analysis

Top Keywords

coli blrde3
8
spider silk
8
silk proteins
8
minimal media
8
conquering isoleucine
4
isoleucine auxotrophy
4
auxotrophy escherichia
4
escherichia coli
4
blrde3 recombinantly
4
recombinantly produce
4

Similar Publications

Purification of recombinantly produced biopharmaceuticals involves removal of host cell material, such as host cell proteins (HCPs). For lysates of the common expression host Escherichia coli (E. coli) over 1500 unique proteins can be identified.

View Article and Find Full Text PDF

Microbial bile salt hydrolases (BSHs), a member of cholylglycine hydrolase (CGH) family, catalyze the hydrolysis of glycine and taurine-linked bile salts in the small intestine of human. BSH is evolutionarily related to penicillin V acylase (PVA) which hydrolyses a penicillin V and is also a member of CGH family. Although, five of the six amino acids, C2, R16, D19, N170, N79 and R223, supposed to be responsible for catalytic activity of BSH enzyme, are strictly conserved in all CGH family members, N79 is partially conserved in this family.

View Article and Find Full Text PDF

BLR(DE3) is a commercially available -deficient derivative of BL21(DE3), one of the most widely used strains for recombinant protein expression. Here, we present the full-genome sequence of BLR(DE3) and highlight additional differences with its parent strain BL21(DE3) which were previously unreported but may affect its physiology.

View Article and Find Full Text PDF

A high cell density fed-batch process was developed for production of recombinant CRM197, a non-toxic mutant of diphtheria toxin widely used as a carrier in polysaccharide-protein conjugate vaccines. Fully soluble recombinant CRM197 was obtained in high yields and with an authentic N-terminus, by targeting the protein to the periplasm of Escherichia coli using the Signal Recognition Particle (SRP)-dependent signal sequence of FlgI. Response Surface Methodology (RSM) was used to optimize the set-points of key process parameters (pH and feed rate at induction).

View Article and Find Full Text PDF

Cloning, expression, and characterization of thermophilic L-asparaginase from Thermococcus kodakarensis KOD1.

J Basic Microbiol

June 2014

School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Republic of Korea.

The present study demonstrates cloning, expression, and characterization of hyperthermostable L-asparaginase from Thermococcus kodakarensis KOD1 in Escherichia coli BLR(DE3). The recombinant 6× His-tagged protein L-asparaginase from T. kodakarensis (TkAsn), was purified to homogeneity by heat treatment followed by affinity chromatography using a nickel-nitrilotriacetic acid (Ni-NTA) column.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!