A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Fluorescent silica colloids for study and visualization of skin care products. | LitMetric

Fluorescent silica colloids for study and visualization of skin care products.

Skin Res Technol

Department of Physics, Clarkson University, Potsdam, NY 13699-5820, USA.

Published: August 2007

Background: The efficacy of skin care products depends on the time and dynamics of their absorbance by the skin, and its spatial distribution on the skin. Regular scrape-based methods may depend on the operator and are destructive and invasive in nature. Here, we describe a novel method based on non-contact optical measurements to trace the location and dynamics of skin care products on the skin.

Methods: We use fluorescent silica colloidal particles of micron sizes at a rather small concentration as non-invasive tracers. As an example of skin care products, we use two base materials: either glycerin or vaseline. A mixture of each product with fluorescent particles is applied on human skin. The amount of fluorescence is monitored by means of a fluorescent spectrometer. The scraping method is used to compare with the spectroscopic measurements.

Results: Fluorescent tracers make the skin care product visible under UV light. This allows obtaining an optical image of the spatial distribution of the product on the skin. The quantitative data of fluorescence are well correlated with the scrape data. Comparison of the difference in the spectral and scraped mass data reveals the details of accumulation of the skin products in skin cracks and crevices.

Conclusion: We described an efficient non-invasive benign method to quantify dynamics and to perform mapping of emollients and humectants on the skin.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1600-0846.2007.00231.xDOI Listing

Publication Analysis

Top Keywords

skin care
20
care products
16
skin
12
fluorescent silica
8
spatial distribution
8
fluorescent
5
care
5
products
5
silica colloids
4
colloids study
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!