Amyloid-beta (Abeta) is the major component of the insoluble amyloid plaques that accumulate intracerebrally in patients with Alzheimer's disease (AD). It has been suggested that MDR1-P-glycoprotein (ABCB1, P-gp) plays a substantial role in the elimination of Abeta from the brain. In the present study, MDR1-transfected LLC cells growing in a polarized cell layer were used to characterize the interaction of Abeta1-40/1-42 with P-gp. In this system, P-gp-mediated transport can be followed by the efflux of the fluorescent dye rhodamine-123, or of Abeta itself from the cells into the apical extracellular space. Abeta significantly decreased the apical efflux of rhodamine-123, and the transcellular transport of Abeta1-40 and Abeta1-42 into the apical chamber could be demonstrated using both ELISA and fluorescence (FITC)-labeled peptides. This transport was inhibited by a P-gp modulator. Furthermore, ATP-dependent, P-gp-mediated transport of the fluorescence-labeled peptides could be demonstrated in isolated, inside-out membrane vesicles. Our data support the concept that P-gp is important for the clearance of Abeta from brain, and thus may represent a target protein for the prevention and/or treatment of neurodegenerative disorders such as AD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8095502 | PMC |
http://dx.doi.org/10.1111/j.1750-3639.2007.00075.x | DOI Listing |
EMBO J
January 2025
The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA.
ABCB1 is a broad-spectrum efflux pump central to cellular drug handling and multidrug resistance in humans. However, how it is able to recognize and transport a wide range of diverse substrates remains poorly understood. Here we present cryo-EM structures of lipid-embedded human ABCB1 in conformationally distinct apo-, substrate-bound, inhibitor-bound, and nucleotide-trapped states at 3.
View Article and Find Full Text PDFbioRxiv
October 2024
Developmental Therapeutics Branch, Center for Cancer Research, NCI, Bethesda, MD, USA.
Immunotherapeutic targeting of cell surface proteins is an increasingly effective cancer therapy. However, given the limited number of current targets, the identification of new surface proteins, particularly those with biological importance, is critical. Here, we uncover delta-like non-canonical Notch ligand 1 (DLK1) as a cell surface protein with limited normal tissue expression and high expression in multiple refractory adult metastatic cancers including small cell lung cancer (SCLC) and adrenocortical carcinoma (ACC), a rare cancer with few effective therapies.
View Article and Find Full Text PDFPharmacy (Basel)
February 2023
Department of Medical Chemistry, Biochemistry and Clinical Chemistry, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia.
Non-vitamin K antagonist oral anticoagulants' interindividual trough concentration variability affects efficacy and safety, especially in bleeding events. Rivaroxaban is metabolised via CYP3A4/5-, CYP2J2-, and CYP-independent mechanisms and is a substrate of two transporter proteins: ABCB1 (MDR1, P-glycoprotein) and ABCG2 (BCRP; breast-cancer-resistance protein). The polymorphisms of these genes may possibly affect the pharmacokinetics of rivaroxaban and, consequently, its safety profile.
View Article and Find Full Text PDFEur J Pharmacol
November 2022
Laboratory of Molecular Pharmacology, St. Petersburg State Institute of Technology (Technical University), Moskovskii pr., 26, St. Petersburg, 190013, Russia.
ABC transporters play an essential role in the development of multidrug resistance and thus are of interest in the context of anticancer therapy. However, MDR1, BCRP and MRP1 are involved in a number of key processes that maintain the viability of the body as a whole, as well as individual organs and cells. These transporters support protective properties of anatomical and histohematic barriers, determining the entry of both toxins and drugs into organs and tissues, as well as facilitating their elimination.
View Article and Find Full Text PDFAntibiotics (Basel)
May 2022
Bacterial Communication and Antimicrobial Strategies Research Unit, University of Rouen Normandy, 55 Rue Saint Germain, 2700 Evreux, France.
The biological effects of alkaloids, curine, guattegaumerine, and verapamil, on were investigated. These molecules did not inhibit growth but increased the sensitivity of this bacterium to carbenicillin, novobiocin, and erythromycin. The results of another study indicate that curine and guattegaumerine were competitors of verapamil and acted as inhibitors of eukaryotic ABCB1 efflux pump.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!