Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.200700990DOI Listing

Publication Analysis

Top Keywords

propylene carbonate
4
carbonate solvent
4
solvent asymmetric
4
asymmetric hydrogenations
4
propylene
1
solvent
1
asymmetric
1
hydrogenations
1

Similar Publications

Effects of Cosolvent and Nonsolvating Solvent on the Structural Dynamics of Organic Electrolytes in Sodium-Ion Batteries.

ACS Appl Mater Interfaces

December 2024

Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.

In sodium-ion batteries (SIBs), the performance of a single solvent often does not meet actual requirements and a cosolvent or nonsolvating solvent is needed. However, the effect of these electrolyte additives on the solvation structure and dynamics of Na in SIBs is yet to be fully understood. Herein, electrolyte structural dynamics are examined for NaPF in dimethyl carbonate (DMC) with 1,1,2,2-tetrafluoro-2,2,2-trifluoroethoxy ethane (HFE) as the nonsolvating solvent or propylene carbonate (PC) as the cosolvent using steady-state and time-resolved infrared (IR) spectroscopies.

View Article and Find Full Text PDF

The simple approach of increasing the elastic properties of atactic poly(propylene carbonate) (PPC) with Mn = 71.4 kDa, ĐM = M/M = 1.86, and predominantly carbonate units (>99%) is suggested by selecting the appropriate hot pressing temperature for PPC between 110 and 140 °C.

View Article and Find Full Text PDF

Sustainable poly(lactic acid) (PLA)/poly(propylene carbonate) (PPC) blends were compatibilized by the environmentally friendly epoxidized soybean oil (ESO) through the chemical reaction of epoxy functional groups on ESO with the terminated carboxyl and hydroxyl groups of PLA/PPC. The compatibilization effect of ESO was confirmed by Fourier transform infrared spectroscopy, rheological property testing, differential scanning calorimetry, and morphological observations. It was revealed that the molecular chain entanglement between PLA and PPC was significantly enhanced and the dispersed PPC phase size was decreased, which endowed the blend with high viscosity modulus, low tan δ, and great stretchability, especially for the blend containing 1.

View Article and Find Full Text PDF

Optimizing lithium-ion battery (LIB) electrolytes is essential for high-current applications such as electric vehicles, yet experimental techniques to characterize the complex structural dynamics responsible for the lithium transport within these electrolytes are limited. In this study, we used ultrafast infrared spectroscopy to measure chemical exchange, spectral diffusion, and solvation structures across a wide range of lithium concentrations in propylene carbonate-based LiTFSI (lithium bis(trifluoromethanesulfonimide) electrolytes, with the CN stretch of phenyl selenocyanate as the long-lived vibrational probe. Phenyl selenocyanate is shown to be an excellent dynamical surrogate for propylene carbonate in Li solvation clusters.

View Article and Find Full Text PDF

In this work, we evaluated two closo-borate salts (LiBH and LiBF) in propylene carbonate from theoretical and experimental perspectives to understand how the coordination environment influences their spectroscopic and electrochemical properties. The coordination environments of the closo-borate salts were modeled via density functional theory (DFT) and molecular dynamics (MD). Vibrational spectra calculated from the predicted coordination environments are in agreement with experimentally measured steady-state FTIR data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!