Protective effect of tanshinone II A on lipopolysaccharide-induced lung injury in rats.

Chin J Integr Med

Department of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.

Published: June 2007

Objective: To explore the protective effect of tanshinone II A on lipopolysaccharide (LPS)-induced lung injury in rats, and possible mechanism.

Methods: LPS (O(111): B4) was used to produce a rat model of acute lung injury. Sprague-Dawley rats were randomly divided into 3 groups (8 in each group): the control group, the model group (ALI group), and the tanshinone II A treatment group. Expression of adhesion molecule CD18 on the surface of polymorphonuclear neutrophil (PMNCD18) in venous white blood cells (WBC), and changes in coagulation-anticoagulant indexes were measured 6 h after injection of LPS or normal saline. Changes in malondialdehyde (MDA) content, wet and dry weight (W/D) ratio and morphometry of pulmonary tissue as well as PMN sequestration in the lung were also measured.

Results: (1) When compared with the control group, expression of PMNCD18 and MDA content were enhanced in the ALI group with a hypercoagulable state (all P<0.01) and an increased W/D ratio (P<0.05). Histopathological morphometry in the lung tissue showed higher PMN sequestration, wider alveolar septa; and lower alveolar volume density (V(V)) and alveolar surface density (S(V)), showing significant difference (P<0.01). (2) When compared with the ALI group, the expression of PMN-CD18, MDA content, and W/D ratio were all lower in Tanshinone II A treatment group (P<0.05) with ameliorated coagulation abnormality (P<0.01). Histopathological morphometry in the lung tissue showed a decrease in the PMN sequestration and the width of alveolar septa (both P<0.01), and an increase in the V(V) and S(V) (P<0.05, P<0.01).

Conclusion: Tan II A plays a protective role in LPS-induced lung injury in rats through improving hypercoagulating state, decreasing PMN-CD18 expression and alleviating migration, reducing lipid peroxidation and alleviating pathological changes.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11655-007-0137-2DOI Listing

Publication Analysis

Top Keywords

lung injury
12
protective tanshinone
8
injury rats
8
control group
8
ali group
8
group expression
8
mda content
8
group
7
tanshinone lipopolysaccharide-induced
4
lung
4

Similar Publications

Sepsis-induced acute lung injury (ALI) is a common acute and severe reason of death in the intensive care unit. Although the pathogenesis is complicated and multifactorial, elevated inflammation and oxidative stress are considered as fundamental mechanisms for the progression of ALI. Anemonin is a natural compound with diverse biological properties including anti-inflammatory and anti-oxidative effects.

View Article and Find Full Text PDF

Children with bronchopulmonary dysplasia (BPD) often exhibit severe respiratory problems and significant pulmonary dysfunction during school age and adulthood. Exercise tests show a decline in cardiopulmonary function and physical performance in children with BPD, who also have a higher incidence of pulmonary hypertension. These children generally perform poorly in terms of intelligence, language, and motor development.

View Article and Find Full Text PDF

Parthenolide improves sepsis-induced coagulopathy by inhibiting mitochondrial-mediated apoptosis in vascular endothelial cells through BRD4/BCL-xL pathway.

J Transl Med

January 2025

Department of Anesthesiology, Daping Hospital, Army Medical University, No.10, Changjiang Road, Yuzhong District, Chongqing, 400042, China.

Background: Sepsis is a systemic inflammatory syndrome that can cause coagulation abnormalities, leading to damage in multiple organs. Vascular endothelial cells (VECs) are crucial in the development of sepsis-induced coagulopathy (SIC). The role of Parthenolide (PTL) in regulating SIC by protecting VECs remains unclear.

View Article and Find Full Text PDF

Silencing of lncRNA Gm26917 Attenuates Alveolar Macrophage-mediated Inflammatory Response in LPS-induced Acute Lung Injury Via Inhibiting NKRF Ubiquitination.

Inflammation

January 2025

Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China.

The inflammatory response mediated by alveolar macrophages plays a crucial role in the development of acute lung injury. Numerous studies have reported that lncRNAs are highly expressed in acute lung injury in mouse models and cell lines, and acute lung injury (ALI) can be effectively alleviated by targeting these lncRNAs. The aim of this study was to explore the mechanism by LncRNA Gm26917 regulates the inflammatory response in alveolar macrophages during acute lung injury mouse model.

View Article and Find Full Text PDF

Evaluating the effectiveness of handheld ultrasound in primary blast lung injury: a comprehensive study.

Sci Rep

January 2025

Department of Military Traffic Injury Prevention and Control, Daping Hospital, Army Medical University, No. 10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, China.

The incidence of blast injuries has been rising globally, particularly affecting the lungs due to their vulnerability. Primary blast lung injury (PBLI) is associated with high morbidity and mortality rates, while early diagnostic methods are limited. With advancements in medical technology, and portable handheld ultrasound devices, the efficacy of ultrasound in detecting occult lung injuries early remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!