Osteosarcoma (OS) remains a life-threatening malignancy and its molecular character is not fully understood. Ezrin is a cytoskeleton linker protein involved in regulating the growth and metastatic capacity of cancer cells. However, the correlation between ezrin mRNA expression and clinical severity has not yet been examined in OS biopsy samples. Furthermore, recent evidence has demonstrated that the level of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) expression is increased in human cancers of various origins, but this has not yet been examined in OS cells. To clarify the correlation between the clinical severity and the levels of ezrin and GAPDH mRNA expression, we quantified these mRNA levels in 4 pediatric OS biopsy samples using real-time quantitative polymerase chain reaction. Among these 4 samples, ezrin mRNA expression was approximately 5-fold higher in a case with lung metastasis compared with the other cases without metastasis, suggesting an association between the ezrin mRNA expression level and metastasis. On the other hand, the GAPDH mRNA expression level was not related to the clinical severity. This is the first report to demonstrate a high level of ezrin mRNA expression in an OS biopsy sample with lung metastasis.

Download full-text PDF

Source
http://dx.doi.org/10.1097/MPH.0b013e3180640d18DOI Listing

Publication Analysis

Top Keywords

mrna expression
28
ezrin mrna
20
lung metastasis
12
clinical severity
12
high level
8
level ezrin
8
mrna
8
expression
8
biopsy sample
8
sample lung
8

Similar Publications

Introduction: Osteosarcoma, a highly aggressive bone cancer primarily affecting children and young adults, remains a significant challenge in clinical oncology. Metastasis stands as the primary cause of mortality in osteosarcoma patients. However, the mechanisms driving this process remain incompletely understood.

View Article and Find Full Text PDF

Loss of N-6 adenine-specific DNA methyltransferase 1 leads to meiotic prophase abnormalities and male sub-fertility in mice.

Biol Reprod

March 2025

The Institute of Cardiovascular Sciences, School of Basic Medical Sciences; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi, China.

Mammalian sexual reproduction critically relies on the generation of haploid gametes following a specialized cell division process known as meiosis. Here, we demonstrate that N-6 Adenine-Specific DNA methyltransferase 1 (N6AMT1) plays a crucial role in the progression of meiosis during spermatogenesis, as follows. N6AMT1 was expressed in germ cells throughout the entire process of spermatogenesis, with a peak in mRNA levels in spermatocytes at the prophase I stage of meiosis.

View Article and Find Full Text PDF

Innate and adaptive immunity are intricately linked to the pathogenesis of ulcerative colitis (UC), with dysregulation of the Treg/Th17 balance and M2/M1 macrophage polarization identified as critical factors. Artesunate (ARS) has previously been shown to alleviate UC by inhibiting endoplasmic reticulum stress (ERS). To further investigate the regulatory effects of ARS on immune dysregulation associated with colitis and the role of ERS in this process, an experimental colitis model was established using dextran sulfate sodium (DSS).

View Article and Find Full Text PDF

Objective: Contact hypersensitivity (CHS), or allergic contact dermatitis (ACD), is an inflammatory skin disorder characterized by an exaggerated allergic reaction to specific haptens. During this delayed-type allergic reaction, the first contact with the allergen initiates the sensitization phase, forming memory T cells. Upon repeated contact with the hapten, the elicitation phase develops, activating mostly macrophages, cytotoxic T cells, and neutrophilic granulocytes.

View Article and Find Full Text PDF

A novel method to assess antibody-dependent cell-mediated cytotoxicity against influenza A virus M2 in immunized murine models.

Biosaf Health

June 2024

Key Laboratory of Biosafety, National Health Commission of the People's Republic of China, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.

The matrix protein 2 (M2) is a preferred target for developing a universal vaccine against the influenza A virus (IAV). This study aimed to develop a method for assessing antibody-dependent cell-mediated cytotoxicity (ADCC) associated with M2-based immunization in mice. We first established a stable cell line derived from mouse lymphoma cells (YAC-1) expressing M2 of H3N2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!