A combination of cDNA-amplified fragment length polymorphism (AFLP) and bulked segregant analysis (BSA) was used to identify genes co-segregating with earliness of tuberization in a diploid potato population. This approach identified 37 transcript-derived fragments with a polymorphic segregation pattern between early and late tuberizing bulks. Most of the identified transcripts mapped to chromosomes 5 (19 markers) and 12 (eight markers) of the paternal map. Quantitative trait locus (QTL) mapping of tuberization time also identified earliness QTLs on these two chromosomes. A potato bacterial artificial chromosome (BAC) library was screened with four of the markers linked to the main QTL. BAC contigs containing the markers showing the highest association with the trait have been identified. One of these contigs has been anchored to chromosome 5 on an ultradense genetic map of potato, which could be used as a starting point for map-based cloning of genes associated with earliness.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jxb/erm140 | DOI Listing |
Neurotox Res
January 2025
Molecular Neuropsychiatry Section, Intramural Research Program, NIH/ NIDA, 21224, Baltimore, MD, U.S.A.
To identify factors involved in methamphetamine (METH) neurotoxicity, we comprehensively searched for genes which were differentially expressed in mouse striatum after METH administration using differential display (DD) reverse transcription-PCR method and sequent single-strand conformation polymorphism analysis, and found two DD cDNA fragments later identified as mRNA of Nedd4 (neural precursor cell expressed developmentally downregulated 4) WW domain-binding protein 5 (N4WBP5), later named Nedd4 family-interacting protein 1 (Ndfip1). It is an adaptor protein for the binding between Nedd4 of ubiquitin ligase (E3) and target substrate protein for ubiquitination. Northern blot analysis confirmed drastic increases in Ndfip1 mRNA in the striatum after METH injections, and in situ hybridization histochemistry showed that the mRNA expression was increased in the hippocampus and cerebellum at 2 h-2 days, in the cerebral cortex and striatum at 18 h-2 days after single METH administration.
View Article and Find Full Text PDFImmunol Res
January 2025
Department of Otolaryngology, Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao Hiser Hospital Affiliated of Qingdao University, Qingdao, 266033, Shandong, People's Republic of China.
Baicalein, one of the major active flavonoids found in Scutellaria baicalensis, has been revealed to exhibit potent anti-inflammatory properties in allergic airway inflammation. This study aimed to explore the role of baicalein and its relevant mechanism in the treatment of allergic rhinitis (AR). The bioinformatics tools were used to predict the targets of baicalein and AR-related genes.
View Article and Find Full Text PDFFunct Integr Genomics
January 2025
Department of Emergency and Critical Care Medicine, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, People's Republic of China.
Narciclasine (Ncs) was effective in sepsis management due to its antioxidant properties. The present study dissected the protective effects of Ncs against sepsis-associated acute kidney injury (SA-AKI) and the molecular mechanisms. The SA-AKI mice were developed using cecum ligation and puncture and pretreated with Ncs and adenoviruses.
View Article and Find Full Text PDFClin Exp Rheumatol
January 2025
Department of Oncology and Vascular Interventional Radiology, Zhongshan Hospital Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China.
Objectives: Dermatomyositis (DM) is frequently associated with interstitial lung disease (ILD); however, the molecular mechanisms underlying this association remain unclear. This study aimed to employ bioinformatics approaches to identify potential molecular mechanisms linking DM and ILD.
Methods: GSE46239 and GSE47162 were analysed to identify common differentially expressed genes (DEGs).
Planta
January 2025
College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
De novo root regeneration (DNRR) involves activation of special cells after wounding, along with the converter cells, reactive oxygen species, ethylene, and jasmonic acid, also playing key roles. An updated DNRR model is presented here with gene regulatory networks. Root formation after tissue injury is a type of plant regeneration known as de novo root regeneration (DNRR).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!