Increased paramagnetic effect of a lanthanide protein probe by two-point attachment.

J Am Chem Soc

Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, Leiden, The Netherlands.

Published: August 2007

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja0725201DOI Listing

Publication Analysis

Top Keywords

increased paramagnetic
4
paramagnetic lanthanide
4
lanthanide protein
4
protein probe
4
probe two-point
4
two-point attachment
4
increased
1
lanthanide
1
protein
1
probe
1

Similar Publications

Since the biological activities and toxicities of 'foreign' and/or excess levels of metal ions are predominantly determined by their precise molecular nature, here we have employed high-resolution H NMR analysis to explore the 'speciation' of paramagnetic Ni(II) ions in human saliva, a potentially rich source of biomolecular Ni(II)-complexants/chelators. These studies are of relevance to the corrosion of nickel-containing metal alloy dental prostheses (NiC-MADPs) in addition to the dietary or adverse toxicological intake of Ni(II) ions by humans. Unstimulated whole-mouth human saliva samples were obtained from n = 12 pre-fasted (≥8 h) healthy participants, and clear whole-mouth salivary supernatants (WMSSs) were obtained from these via centrifugation.

View Article and Find Full Text PDF

Spin Magnetic Effect Activate Dual Site Intramolecular O─O Bridging for Nickel-Iron Hydroxide Enhanced Oxygen Evolution Catalysis.

Adv Sci (Weinh)

January 2025

Institution Faculty of Arts and Sciences & Center for Advanced Materials Research, Beijing Normal University, Zhuhai, 519087, China.

The oxygen evolution reaction (OER) involves the recombination of diamagnetic hydroxyl (OH) or water (HO) into the paramagnetic triplet state of oxygen (O). The spin conservation of oxygen intermediates plays a crucial role in OER, however, research on spin dynamics during the catalytic process remains in its early stages. Herein, β-Ni(OH) and Fe-doped β-Ni(OH) (NiFe(OH)) are utilized as model catalysts to understand the mechanism of spin magnetic effects at iron (III) sites during OER.

View Article and Find Full Text PDF

The application of neonicotinoid insecticides (NEOs) increases the potential exposure risks and has an impact on the aroma quality of tomato fruits. Here, 3D cornflower-like MoS (MoS-CF) was fabricated to directly activate peroxymonosulfate (PMS) for fast removal of three typical NEOs. The 3D MoS-CF catalyst achieved over 96.

View Article and Find Full Text PDF

Purpose: Solid crystalline spin probes, such as lithium phthalocyanine (LiPc) and lithium octa-n-butoxynaphthalocyanine (LiNc-BuO), allow repeated oxygen measurement using electron paramagnetic resonance (EPR). Due to their short relaxation times, their use for pulse EPR oxygen imaging is limited. In this study, we developed and tested a new class of solid composite spin probes that modified the relaxation rates R and R of LiPc or LiNc-BuO probes, which allowed pO measurements in the full dynamic (0-760 torr) range.

View Article and Find Full Text PDF

Decipher syntrophies and adaptive response towards enhancing conversion of propionate to methane under psychrophilic condition.

Water Res

January 2025

Laboratory of Biomass Bio-chemical Conversion, Guang Zhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China. Electronic address:

Propionate is a key intermediate in anaerobic digestion (AD) under low operational temperatures, which can destabilize the process. In this study, the supplementation of syntrophic cold-tolerant consortia and trace elements significantly improved the performance of psychrophilic (20 °C) reactor, increasing methane production to 91 % of mesophilic reactor levels and reducing propionate concentrations to less than 2 % of those in untreated psychrophilic reactors. Multi-omics analyses revealed that psychrophilic conditions downregulated the methylmalonyl-CoA and aceticlastic methanogenesis pathways.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!