The quantum mechanical relaxation rate for a high-frequency vibrational mode is evaluated for a one-dimensional model system having two diatomic molecules involved in a collinear collision. The thermally averaged rate is obtained as an integral over energies for the relative translation of the two molecules. These calculations show that energies several times K(B)T make the largest contributions to the rate. Several orders of magnitude of cancellation due to phase interference is found in the evaluation of the coupling matrix elements between the initial and final states, and this is one of the main factors leading to the very small value for the relaxation rate. The region near the classical turning point in the relative translational motion of the colliding molecules dominates the calculation of the contribution to the rate at each energy. Calculations using low-order expansions of the translational potential energy and the interstate coupling about this turning point provide good approximations to the exact quantum mechanical rate. This suggests a possible method for performing calculations of the rate by means of realistic simulations of liquid systems.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp072035sDOI Listing

Publication Analysis

Top Keywords

relaxation rate
12
rate
8
rate high-frequency
8
quantum mechanical
8
turning point
8
classically forbidden
4
forbidden region
4
calculations
4
region calculations
4
calculations relaxation
4

Similar Publications

Microsurgical learning is a difficult and stressful process, requiring self-control to achieve relaxation. The purpose of this study is to evaluate peripheral and central nervous system relaxation during microsurgical training. This cohort study included ten medical students with no previous experience in microsurgery.

View Article and Find Full Text PDF

A three-sectioned, bidirectionally coupled, tunable, optical comb source is presented. The photonic integrated circuit (PIC) consists of a gain section, a slotted mirror section and a Fabry-Perot (FP) section. Optical frequency combs (OFCs) are produced by gain switching the FP section via a high power radio frequency (RF) signal.

View Article and Find Full Text PDF

Through the investigation of spectral characteristics, the evolution of cluster proportions and the cross-relaxation process in Tm:CaF crystals as a function of Tm doping concentration has been clarified. A quantitative model has been established to describe the relationship between these factors. At low concentrations (0.

View Article and Find Full Text PDF

MR imaging of proton beam-induced oxygen depletion.

Med Phys

January 2025

OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.

Background: Previous studies have shown that in-beam magnetic resonance imaging (MRI) can be used to visualize a proton beam during the irradiation of liquid-filled phantoms. The beam energy- and current-dependent local image contrast observed in water was identified to be predominantly caused by beam-induced buoyant convection and associated flow effects. Besides this flow dependency, the MR signal change was found to be characterized by a change in the relaxation time of water, hinting at a radiochemical contribution, which was hypothesized to lie in oxygen depletion-evoked relaxation time lengthening.

View Article and Find Full Text PDF

Background: The therapeutic armamentarium for heart failure with preserved ejection fraction (HFpEF) remains notably constrained. A factor contributing to this problem could be the scarcity of in vitro models for HFpEF, which hinders progress in developing new therapeutic strategies. Here, we aimed at developing a novel, comorbidity-inspired, human, in vitro model for HFpEF.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!