The main objective of this study was to monitor the volatile organic compounds (VOCs) in the stack gas released from organic chemical industrial plants to determine emission factors. Samples from 52 stacks, with or without air pollution control devices (APCDs), from seven industrial processes were taken and VOCs measured using U.S. Environmental Protection Agency (EPA) Method 18. These 7 processes, including 26 plants, were the manufacturers of acrylonitrile-butadiene-styrene (ABS), polyvinyl chloride (PVC), polystyrene (PS), acrylic resin (ACR), vinyl chloride (VC), para-terephthalic acid (PTA), and synthetic fiber (SYF). The results clearly indicate significant variations of emission factors among the various industrial processes, particularly emission factors for those without APCDs. As expected, those with APCDs yield much less emission factors. Regardless of those with or without APCDs, the order of manufacturing processes with regard to VOC emission factors is SYF > ABS > PS >ACR > PTA > PVC > VC. The emission factors for some processes also differ from those in EPA-42 data file. The VOC profiles further indicate that some VOCs are not listed in the U.S. VOC/Particulate Matter Speciation Data System (SPECIATE). The potential O3 formation is determined from the total amount of VOC emitted for each of seven processes. The resultant O3 yield varied from 0.22 (ACR) to 2.33 g O3 g(-1) VOC (PTA). The significance of this O3 yield is discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3155/1047-3289.57.6.698 | DOI Listing |
Sci Total Environ
January 2025
Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 101408, China. Electronic address:
The biogeochemical processes of organic matter exhibit notable variability and unpredictability in marginal seas. In this study, the abiologically and biologically driving effects on particulate organic matter (POM) and dissolved organic matter (DOM) were investigated in the Yellow Sea and Bohai Sea of China, by introducing the cutting-edge network inference tool of deep learning. The concentration of particulate organic carbon (POC) was determined to characterize the status of POM, and the fractions and fluorescent properties of DOM were identified through 3D excitation-emission-matrix spectra (3D-EEM) combined parallel factor analysis (PARAFAC).
View Article and Find Full Text PDFJ Environ Manage
January 2025
Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China.
Application of biogas slurry (BS) can promote ammonia (NH) volatilization. Algae sludge and Quercus acutissima leaves are rich in resources and nutrients, and can be effectively converted into valuable products. Hydrothermal carbonization technology (HTC) is a sustainable method for the treatment of wet biomass.
View Article and Find Full Text PDFBraz J Otorhinolaryngol
January 2025
Shanghai Jiao Tong University, School of Medicine, Hainan Branch of Shanghai Children's Medical Center, Department of Otorhinolaryngology, Sanya, China; Shanghai Jiao Tong University, School of Medicine, Shanghai Children's Medical Center, Department of Otorhinolaryngology, Shanghai, China. Electronic address:
Objective: We aimed to investigate the correlation between prevalent risk factors for high-risk neonates in neonatal intensive care unit and their hearing loss, and to examine the audiological features and genetic profiles associated with different deafness mutations in our tertiary referral center. This research seeks to deepen our understanding of the etiology behind congenital hearing loss.
Methods: We conducted initial hearing screenings, including automated auditory brainstem response, distortion product otoacoustic emission, and acoustic immittance on 443 high-risk neonates within 7 days after birth and 42 days (if necessary) after birth.
Oecologia
January 2025
Plant Evolutionary Ecology, Institute of Ecology, Evolution and Diversity, Faculty of Biological Sciences, Goethe University Frankfurt, Max-Von-Laue-Str. 13, 60438, Frankfurt am Main, Germany.
Rapid environmental changes across Europe include warmer and increasingly variable temperatures, changes in soil nutrient availability, and pollinator decline. These abiotic and biotic changes can affect natural plant populations and force them to optimize resource use against competitors. To date, the evolution of competitive ability in the context of changes in nutrient availability remains understudied.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan.
Conventional power generation methods have led to adverse environmental impacts. Thus, the need for a strategic transition to alternative energy sources arises. This study presents a comprehensive approach to sustainable solar energy deployment using multi-criteria decision-making (MCDM) techniques.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!