This work reports the feasibility of using Pd nanoparticles as innovative catalysts in the conversion of reducible contaminants from toxic to benign forms. Cr(VI) is a known carcinogen while the trivalent chromium salts are believed to be non-toxic. The ability of Pd nanoparticles to catalyze the rapid reduction of Cr(VI) to Cr(III) using reactive sulfur intermediates produced in situ was therefore studied. Using a microchamber set at 130 degrees C, the reduction mixture consists of palladium nanoparticles and sulfur (PdNPs/S), which generated highly reducing sulfur intermediates that effected the reduction of Cr(VI) to Cr(III) by 1st order reaction kinetics. UV-visible spectroscopy and cyclic voltammetry were employed to monitor the reduction process. The results showed that 99.8% of 400 microM Cr(VI) was reduced to Cr(III) by PdNPs/S in one hour compared to 2.1% by a control experiment consisting of sulfur only. The rate of Cr(VI) reduction was found to be dependent on temperature and pH and was greatly enhanced by the addition of PdNPs. Subsequent application of this approach in the reduction of Cr(VI) in soil and aqueous media was conducted. In contrast to the control experiments with and without PdNPs or sulfur, greater than 92% conversion rate was obtained in the presence of PdNPs/S within 1 hour. This represents over a 500-fold improvement in conversion rate compared to current microbial approaches. XPS analysis provided the confirmation regarding the oxidation states of Cr(VI), Cr(III) and the nature of the reactive intermediates. This work offers PdNPs/S as a new interface for the reduction of high oxidation state heavy metal pollutants.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b706225gDOI Listing

Publication Analysis

Top Keywords

crvi criii
16
reduction crvi
12
palladium nanoparticles
8
crvi
8
sulfur intermediates
8
pdnps/s hour
8
conversion rate
8
reduction
7
criii
5
sulfur
5

Similar Publications

Enhancing hexavalent chromium stable reduction via sodium alginate encapsulation of newly isolated fungal and bacterial consortia.

J Hazard Mater

December 2024

School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China; Key Laboratory of Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China. Electronic address:

Chromium [Cr(VI)]-induced soil pollution is a serious environmental threat. Bioremediation utilizes specific microbes capable of transforming Cr(VI) into the less toxic Cr(III), however, microbial efficacy can be inhibited by elevated pollutant concentrations and competition from indigenous microbial communities. Thus, this study explored the potential of single and multi-domain microbial consortia encapsulated in alginate to overcome these shortcomings.

View Article and Find Full Text PDF

In this study, kapok fiber (KF) a hollow and hydrophobic fiber, was modified with cetyltrimethylammonium bromide (CTAB) or cetylpyridinium chloride (CPC), rendering adsorbed amount of ∼0.75 × 10 mol/g. Small-angle X-ray scattering (SAXS) measurements of dry KF/CTAB and KF/CPC evidenced a periodic distance of ∼2.

View Article and Find Full Text PDF

Simple and Rapid HPLC-ICP-MS Method for the Simultaneous Determination of Cr(III) and Cr(VI) by Combining a 2,6-Pyridinedicarboxylic Acid Pre-Complexation Treatment.

Mass Spectrom (Tokyo)

December 2024

Department of Applied Chemistry for Environment, School of Science and Technology, Kwansei Gakuin University, Gakuen-Uegahara-1, Sanda, Hyogo 669-1330, Japan.

A simple and rapid analytical method was developed for the simultaneous determination of two chromium species, Cr(III) and Cr(VI), in the environmental waters by high-performance liquid chromatography-inductively coupled plasma-mass spectrometry (HPLC-ICP-MS). This study incorporated a chelating pretreatment with 2,6-pyridinedicarboxylic acid (PDCA) to convert Cr(III) species into a stable Cr(III)-PDCA anion complex, which was then separated from Cr(VI) oxyanion using an anion exchange column. Building on the fundamental analytical approach proposed by Shigeta .

View Article and Find Full Text PDF

Photochemical oxidation of Cr(III) to Cr(VI) in the presence of Fe(III): Influence of Fe(III) concentration and UV wavelength.

J Hazard Mater

December 2024

Department of Soil and Environmental Sciences, National Chung Hsing University, Taichung 40227, Taiwan; Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung 40227, Taiwan. Electronic address:

The reduction of Cr(VI) to Cr(III) is key to lowering environmental toxicity and mobility, but the reverse process remains less understood. We investigated Cr(III) oxidation mechanisms across various pH levels and light wavelengths (185, 254, and 358 nm) in the presence of Fe(III). At pH 3.

View Article and Find Full Text PDF

Remediation of Cr(VI) Polluted Groundwater Using Zero-Valent Iron Composites: Preparation, Modification, Mechanisms, and Environmental Implications.

Molecules

December 2024

Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang'an University, Xi'an 710054, China.

The extensive application of chromium (Cr) in many industries has inevitably resulted in the release of Cr(VI) into the groundwater environment, thus posing damage to the ecosystem and human health. Nano zero-valent iron (nZVI) has been widely studied and applied in the remediation of Cr(VI)-contaminated water as an ideal material with high reductive capacity, which enables the transformation of teratogenic and carcinogenic Cr(VI) into less toxic Cr(III). This review comprehensively summarizes the preparation and modification methods of nZVI Cr(VI) removal performance and mechanisms by nZVI and modified nZVI materials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!