Asn-linked glycans (N-glycans) play important roles in the quality control (QC) of glycoprotein folding in the endoplasmic reticulum (ER) lumen and in ER-associated degradation (ERAD) of proteins by cytosolic proteasomes. A UDP-Glc:glycoprotein glucosyltransferase glucosylates N-glycans of misfolded proteins, which are then bound and refolded by calreticulin and/or calnexin in association with a protein disulfide isomerase. Alternatively, an alpha-1,2-mannosidase (Mns1) and mannosidase-like proteins (ER degradation-enhancing alpha-mannosidase-like proteins 1, 2, and 3) are part of a process that results in the dislocation of misfolded glycoproteins into the cytosol, where proteins are degraded in the proteasome. Recently we found that numerous protists and fungi contain 0-11 sugars in their N-glycan precursors versus 14 sugars in those of animals, plants, fungi, and Dictyostelium. Our goal here was to determine what effect N-glycan precursor diversity has on N-glycan-dependent QC systems of glycoprotein folding and ERAD. N-glycan-dependent QC of folding (UDP-Glc:glycoprotein glucosyltransferase, calreticulin, and/or calnexin) was present and active in some but not all protists containing at least five mannose residues in their N-glycans and was absent in protists lacking Man. In contrast, N-glycan-dependent ERAD appeared to be absent from the majority of protists. However, Trypanosoma and Trichomonas genomes predicted ER degradation-enhancing alpha-mannosidase-like protein and Mns1 orthologs, respectively, each of which had alpha-mannosidase activity in vitro. Phylogenetic analyses suggested that the diversity of N-glycan-dependent QC of glycoprotein folding (and possibly that of ERAD) was best explained by secondary loss. We conclude that N-glycan precursor length has profound effects on N-glycan-dependent QC of glycoprotein folding and ERAD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1905923PMC
http://dx.doi.org/10.1073/pnas.0704862104DOI Listing

Publication Analysis

Top Keywords

glycoprotein folding
20
folding erad
12
endoplasmic reticulum
8
quality control
8
udp-glcglycoprotein glucosyltransferase
8
calreticulin and/or
8
and/or calnexin
8
degradation-enhancing alpha-mannosidase-like
8
n-glycan precursor
8
diversity n-glycan-dependent
8

Similar Publications

P-selectin glycoprotein ligand-1 (PSGL-1), a mucin-like surface glycoprotein, is primarily expressed on lymphoid and myeloid cells. PSGL-1 has recently been identified as an HIV restriction factor, blocking HIV infectivity mainly through virion incorporation that sterically hinders virion attachment to target cells. PSGL-1 also inhibits HIV Env incorporation into virions.

View Article and Find Full Text PDF

A considerable amount of work has been carried out on the biology of learning and memory acquisition, and retention [1-6]; however, little is known regarding how the information is written in the brain [7-9]. It is notable that in the Neuron Theory postulated by Santiago Ramón y Cajal [10], neurons were conceived to form a contiguous instead of a continuous structure. They were physically separated but could function through their connections by synapses [11].

View Article and Find Full Text PDF

[Molecular Mechanism of Protein C Deficiency Caused by Mutations of Gene N355S, G392E, T314A].

Zhongguo Shi Yan Xue Ye Xue Za Zhi

December 2024

Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Collaborative Innovation Center of Hematology, Suzhou 215006, Jiangsu Province, China.

Objective: To study the molecular mechanism of functional defect of protein C (PC) caused by point mutations of human protein C gene ( ) N355S , G392E and T314A.

Methods: The wild-type and mutant plasmids (PC, PC, PC, PC) of gene were constructed and transiently transfected into HEK293 cells. The expression of mutant proteins in vitro were tested.

View Article and Find Full Text PDF

In-depth site-specific glycoproteomic analysis reveals ER-resident protein PDI regulating wheat yellow mosaic virus infection.

Int J Biol Macromol

December 2024

Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China; Zhenhai Institute of Mass Spectrometry, Ningbo 315211, China. Electronic address:

N-glycosylation is crucial in the process of wheat yellow mosaic virus (WYMV) infection, but changes in site-specific N-glycosylation of proteins during WYMV infection have not been well studied. In this study, we employed an intact glycopeptide approach to analyze mock- and WYMV-infected wheat plants. We found that most glycoproteins have N-glycans containing paucimannose or complex/hybrid chains.

View Article and Find Full Text PDF

Topological confinement by a membrane anchor suppresses phase separation into protein aggregates: Implications for prion diseases.

Proc Natl Acad Sci U S A

January 2025

Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum 44801, Germany.

Protein misfolding and aggregation are a hallmark of various neurodegenerative disorders. However, the underlying mechanisms driving protein misfolding in the cellular context are incompletely understood. Here, we show that the two-dimensional confinement imposed by a membrane anchor stabilizes the native protein conformation and suppresses liquid-liquid phase separation (LLPS) and protein aggregation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!