Background: Prosthetic reconstruction with extracortical bone-bridging fixation is an effective method for the treatment of massive bone loss. We evaluated the effect of the use of recombinant human osteogenic protein-1 (rhOP-1) combined with allogenic cortical bone strips as a substitute for an autogenous bone graft for extracortical bone-bridging.
Methods: Eight skeletally mature adult male dogs underwent a bilateral resection of a 6-cm segment of the femoral diaphysis and reconstruction with a porous segmental prosthesis. On the experimental side, an allogenic cortical onlay graft in the form of bone strips combined with rhOP-1 mixed with bovine type-I-collagen putty (OP-1 putty) was applied. On the control side, allogenic cortical bone strips augmented with autogenous cancellous bone chips and bone marrow were used. The reconstructions were followed for twelve weeks with biweekly evaluations of load-bearing gait and radiographs. The animals were killed twelve weeks after the surgery, and the reconstructed femora were studied biomechanically, histologically, and with microradiographs.
Results: One animal was excluded from the analysis because a fracture of the proximal part of the femur on the control side was observed radiographically twelve weeks after the surgery. There were no significant differences in load-bearing gait between the experimental and control sides throughout the experimental period. Serial radiographs revealed a 1.9-fold (p<0.04), 2.7-fold (p<0.01), and 2.4-fold (p<0.03) increase in mineralized area on the experimental side at two, four, and six weeks, respectively. The torsional stiffness and strength of the fixation attributed to the extracortical bridging bone alone were 2.3-fold (p<0.03) and 2.2-fold (p=0.058) greater on the experimental side, respectively. The allograft porosity on the experimental side was 3.8-fold (p<0.02) greater than that on the control side. With the number of samples available, there was no significant difference in mineral apposition rate between the experimental and control sides.
Conclusions: In an animal model of segmental bone-replacement prosthetic fixation with use of the extracortical bone-bridging principle, an allogenic onlay cortical graft combined with rhOP-1 was an effective substitute for autogenous bone graft.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2106/JBJS.F.00290 | DOI Listing |
Front Immunol
January 2025
Department of Hematology, Changhai Hospital, The Second Military Medical University, Shanghai, China.
Background: Chronic graft-versus-host disease (cGVHD) manifests with characteristics of autoimmune disease with organs attacked by pathogenic helper T cells. Recent studies have highlighted the role of T cells in cGVHD pathogenesis. Due to limited understanding of underlying mechanisms, preventing cGVHD after allogenic hematopoietic cell transplantation (HCT) has become a major challenge.
View Article and Find Full Text PDFJ Funct Biomater
December 2024
Biotechnology Research Institute, Samara State Medical University, 443079 Samara, Russia.
Mandibular bone defect reconstruction remains a significant challenge for surgeons worldwide. Among multiple biodegradable biopolymers, allogeneic bone scaffolds derived from human sources have been used as an alternative to autologous bone grafts, providing optimal conditions for cell recruitment, adhesion, and proliferation and demonstrating significant osteogenic properties. This study aims to investigate the bone microstructure of the human scapula as a source for allogeneic bone scaffold fabrication for mandibular tissue engineering purposes.
View Article and Find Full Text PDFExp Neurol
December 2024
Department of Biomedical Engineering, Boston University, Boston, MA 02215-2407, USA. Electronic address:
Stem cell grafting can promote glial repair of adult stroke injuries during the subacute wound healing phase, but graft survival and glial repair outcomes are perturbed by lesion severity and mode of injury. To better understand how stroke lesion environments alter the functions of cell grafts, we employed optical coherence tomography (OCT) to longitudinally image mouse cortical photothrombotic ischemic strokes treated with allogeneic neural progenitor cell (NPC) grafts. OCT angiography, signal intensity, and signal decay resulting from optical scattering were assessed at multiple timepoints across two weeks in mice receiving an NPC graft or an injection of saline at two days after stroke.
View Article and Find Full Text PDFJ Clin Med
December 2024
Department of Orthopaedics and Trauma, Medical University of Graz, 8036 Graz, Austria.
Talar neck fractures are complex injuries that become particularly challenging when accompanied by bone loss or comminution. This case report introduces the use of an allograft bone screw as a novel method for bridging lateral comminution at the talar neck, providing structural support and promoting bone regeneration. : A 20-year-old male sustained a comminuted talar neck fracture with subtalar and tibiotalar dislocation after a bouldering fall.
View Article and Find Full Text PDFMol Ther
January 2025
Gladstone Institute of Neurological Disease, San Francisco, CA, USA; University of California, San Francisco, Department of Neurology, and the Kavli Institute for Fundamental Neuroscience, San Francisco, CA, USA; University of California, San Francisco, Neurosciences Graduate Program, San Francisco, CA, USA. Electronic address:
Allogeneic modified bone marrow-derived human mesenchymal stromal/stem cells (hMSC-SB623 cells) are in clinical development for the treatment of chronic motor deficits after traumatic brain injury and cerebral ischemic stroke. However, their exact mechanisms of action remain unclear. Here, we investigated the effects of this cell therapy on cortical network excitability, brain tissue, and peripheral blood at a chronic stage after ischemic stroke in a rat model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!