We have shown previously that interleukin-8 (IL-8) and IL-8 receptor expression is elevated in tumor cells of human prostate biopsy tissue and correlates with increased cyclin D1 expression. Using PC3 and DU145 cell lines, we sought to determine whether IL-8 signaling regulated cyclin D1 expression in androgen-independent prostate cancer (AIPC) cells and to characterize the signaling pathways underpinning this response and that of IL-8-promoted proliferation. Administration of recombinant human IL-8 induced a rapid, time-dependent increase in cyclin D1 expression in AIPC cells, a response attenuated by the translation inhibitor cycloheximide but not by the RNA synthesis inhibitor, actinomycin D. Suppression of endogenous IL-8 signaling using neutralizing antibodies to IL-8 or its receptors also attenuated basal cyclin D1 expression in AIPC cells. Immunoblotting using phospho-specific antibodies confirmed that recombinant human IL-8 induced rapid time-dependent phosphorylation of Akt and the mammalian target of rapamycin substrate proteins, 4E-BP1 and ribosomal S6 kinase, resulting in a downstream phosphorylation of the ribosomal S6 protein (rS6). LY294002 and rapamycin each abrogated the IL-8-promoted phosphorylation of rS6 and attenuated the rate of AIPC cell proliferation. Our results indicate that IL-8 signaling (a) regulates cyclin D1 expression at the level of translation, (b) regulates the activation of proteins associated with the translation of capped and 5'-oligopyrimidine tract transcripts, and (c) activates signal transduction pathways underpinning AIPC cell proliferation. This study provides a molecular basis to support the correlation of IL-8 expression with that of cyclin D1 in human prostate cancer and suggests a mechanism by which this chemokine promotes cell proliferation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1158/1541-7786.MCR-07-0032 | DOI Listing |
Cancer Res
January 2025
First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
Sunitinib is a first-line targeted therapy for patients with renal cell carcinoma (RCC), but resistance represents a significant obstacle to the treatment of advanced and metastatic RCC. Metabolic reprogramming is a characteristic of RCC, and changes in metabolic processes might contribute to resistance to sunitinib. Here, we identified MTHFD2, a mitochondrial enzyme involved in one-carbon metabolism, as a critical mediator of sunitinib resistance in RCC.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Department of Molecular Biology Vadi Kampüsü, Istanbul Atlas University, Anadolu Cd., No 40, Kağıthane, Istanbul, 34408, Turkey.
Background: Modulation of protein synthesis according to the physiological cues is maintained through tight control of Eukaryotic Elongation Factor 2 (eEF2), whose unique translocase activity is essential for cell viability. Phosphorylation of eEF2 at its Thr56 residue inactivates this function in translation. In our previous study we reported a novel mode of post-translational modification that promotes higher efficiency in T56 phosphorylation.
View Article and Find Full Text PDFAm J Cancer Res
December 2024
Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health Bethesda, MD 20892, USA.
Anaplastic thyroid cancer (ATC) is a lethal endocrine malignancy. It has been shown that tumor-associated macrophages (TAMs) contribute to the aggressiveness of ATC. However, stimulatory factors that could facilitate the induction and infiltration of TAMs in the ATC tumor microenvironment (TME) are not fully elucidated.
View Article and Find Full Text PDFColorectal cancer (CRC) is a prevalent and deadly disease, necessitating the exploration of novel therapeutic strategies. Traditional chemotherapy often encounters drug resistance and adverse side effects, highlighting the need for alternative approaches. , a plant rich in phytochemical constituents, was investigated for its potential as an anticancer agent against colorectal cancer (CRC).
View Article and Find Full Text PDFQuinoa saponins can inhibit the survival of specific cancer cells. However, there is still a lack of systematic research on the effects of quinoa saponins on colon cancer cells. This experiment confirmed that quinoa saponins prevented human colon cancer HT-29 cells from growing in vitro.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!