Background: Despite numerous studies identifying the risk factors related to gram-negative antimicrobial resistance, an epidemiological model to reliably predict antimicrobial gram-negative resistance in clinics, before the bacterial culture result is available, has not yet been developed.
Objectives: The aim of this study was to develop a predictive model to assist physicians in selecting appropriate antimicrobial agents before the details of the microbiology and drug susceptibility are known.
Materials And Methods: A prospective study was conducted between June 1, 2001, and May 31, 2002, at the emergency department (ED) of National Taiwan University Hospital. Enrollees were patients with gram-negative bacteremia (GNB) at ED. Other information collected included demographic characteristics, underlying comorbidities, hospital exposure and health care-associated factors, and details of initial presentation. Two primary outcomes were defined, including cefazolin-resistant (CZ-RES) GNB and ceftriaxone-resistant (CTX-RES) GNB. Two thirds of the data was randomly allocated to a derivation data set (for developing predictive models), and the rest, to a validation data set (for testing model validity). Simplified models, using a coefficient-based scoring method, were also developed for clinical applications.
Results: Based on 695 episodes of GNB, predictors of CZ-RES GNB were time since last hospitalization (increased risk for durations <1 month), prior infection with a CTX-RES strain, post-transplantation immunosuppressant use, residence in a nursing home or history of stroke with repeated choking, and poor oxygen saturation (<95%) at admission to ED. Cirrhosis showed a protective effect by reducing the odds of antimicrobial-resistant GNB. The area under receiver operating characteristic (ROC) curve for the CZ-RES model was 0.76 (95% confidence interval, 0.71-0.81). The CTX-RES model included all the variables that were in the CZ-RES model plus abnormal leukocyte count (<1000 or >15,000 /mm3) at entry to ED. In this case, however, previous hospitalization within the last 2 weeks was a key factor. The area under this ROC curve was 0.82 (95% confidence interval, 0.76-0.88). There was lacking of difference in the area under the ROC curve between the 2 final (simplified) models either based on the derivation or validation data sets.
Conclusion: We have developed 2 models for predicting risk of antimicrobial gram-negative infection by identifying and quantifying associated risk factors. These models could be used by physicians to determine the most appropriate choice of antibiotic for first-line therapy, particularly in situations where the culture result is not yet known.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ajem.2006.11.024 | DOI Listing |
Sci Rep
December 2024
KAUST Center of Excellence for Smart Health (KCSH), King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia.
Analyzing microbial samples remains computationally challenging due to their diversity and complexity. The lack of robust de novo protein function prediction methods exacerbates the difficulty in deriving functional insights from these samples. Traditional prediction methods, dependent on homology and sequence similarity, often fail to predict functions for novel proteins and proteins without known homologs.
View Article and Find Full Text PDFSci Rep
December 2024
College of Mining Engineering, Guizhou University of Engineering Science, Bijie, 551700, China.
The Laurani high-sulfidation epithermal deposit, located in the northeastern Altiplano of Bolivia, is a representative gold-polymetallic deposit linked to the late Miocene volcanic rocks that were formed approximately at about 7.5 Ma. At Laurani, four mineralization stages are defined.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Medical Device Development, Seoul National University College of Medicine, Seoul, Republic of Korea.
Vertebral collapse (VC) following osteoporotic vertebral compression fracture (OVCF) often requires aggressive treatment, necessitating an accurate prediction for early intervention. This study aimed to develop a predictive model leveraging deep neural networks to predict VC progression after OVCF using magnetic resonance imaging (MRI) and clinical data. Among 245 enrolled patients with acute OVCF, data from 200 patients were used for the development dataset, and data from 45 patients were used for the test dataset.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Pharmaceutics, College of Pharmacy, University of Ha'il, Ha'il, 81442, Saudi Arabia.
This research article presents a thorough and all-encompassing examination of predictive models utilized in the estimation of viscosity for ionic liquid solutions. The study focuses on crucial input parameters, namely the type of cation, the type of anion, the temperature (measured in Kelvin), and the concentration of the ionic liquid (expressed in mol%). This study assesses three influential machine learning algorithms that are based on the Decision Tree methodology.
View Article and Find Full Text PDFSci Rep
December 2024
Computer Science Department, Saarland University, Saarbrücken, Germany.
Estimating the numbers and whereabouts of internally displaced people (IDP) is paramount to providing targeted humanitarian assistance. In conflict settings like the ongoing Russia-Ukraine war, on-the-ground data collection is nevertheless often inadequate to provide accurate and timely information. Satellite imagery may sidestep some of these challenges and enhance our understanding of the IDP dynamics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!