Background: Neuroinflammation following acute brain trauma is considered to play a prominent role in both the pathological and reconstructive response of the brain to injury. Here we characterize and contrast both an acute and delayed phase of inflammation following experimental penetrating ballistic brain injury (PBBI) in rats out to 7 days post-injury.
Methods: Quantitative real time PCR (QRT-PCR) was used to evaluate changes in inflammatory gene expression from the brain tissue of rats exposed to a unilateral frontal PBBI. Brain histopathology was assessed using hematoxylin and eosin (H&E), silver staining, and immunoreactivity for astrocytes (GFAP), microglia (OX-18) and the inflammatory proteins IL-1beta and ICAM-1.
Results: Time course analysis of gene expression levels using QRT-PCR indicated a peak increase during the acute phase of the injury between 3-6 h for the cytokines TNF-alpha (8-11 fold), IL-1beta (11-13 fold), and IL-6 (40-74 fold) as well as the cellular adhesion molecules VCAM (2-3 fold), ICAM-1 (7-15 fold), and E-selectin (11-13 fold). Consistent with the upregulation of pro-inflammatory genes, peripheral blood cell infiltration was a prominent post-injury event with peak levels of infiltrating neutrophils (24 h) and macrophages (72 h) observed throughout the core lesion. In regions of the forebrain immediately surrounding the lesion, strong immunoreactivity for activated astrocytes (GFAP) was observed as early as 6 h post-injury followed by prominent microglial reactivity (OX-18) at 72 h and resolution of both cell types in cortical brain regions by day 7. Delayed thalamic inflammation (remote from the primary lesion) was also observed as indicated by both microglial and astrocyte reactivity (72 h to 7 days) concomitant with the presence of fiber degeneration (silver staining).
Conclusion: In summary, PBBI induces both an acute and delayed neuroinflammatory response occurring in distinct brain regions, which may provide useful diagnostic information for the treatment of this type of brain injury.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1933533 | PMC |
http://dx.doi.org/10.1186/1742-2094-4-17 | DOI Listing |
Neurocrit Care
January 2025
Faculty of Psychology, Chulalongkorn University, Bangkok, Thailand.
Background: Super-refractory status epilepticus (SRSE) is an extremely serious neurological emergency. Risk factors and mechanisms involved in transition from refractory status epilepticus (RSE) to SRSE are insufficiently studied.
Methods: This was a multicenter retrospective cohort study of consecutive patients diagnosed and treated for RSE at two reference hospital over 5 years in Ecuador.
Neurocrit Care
January 2025
Division of Neurosurgery, Department of Neurology, University of São Paulo Medical School, São Paulo, Brazil.
This review explores low-cost neurocritical care interventions for resource-limited settings, including economical devices, innovative care models, and disease-specific strategies. Devices like inexpensive ventilators, wearable technology, smartphone-based ultrasound, brain4care, transcranial Doppler, and smartphone pupillometry offer effective diagnostic and monitoring capabilities. Initiatives such as intermediate care units, minimally equipped stroke units, and tele-neurocritical care have demonstrated benefits by reducing hospital stays, preventing complications, and improving clinical and economic outcomes.
View Article and Find Full Text PDFNeurosci Biobehav Rev
January 2025
Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Viale delle Scienze 11, 43125 Parma, Italy.
Perinatal asphyxia (PA) is a leading cause of neonatal morbidity and mortality, often resulting in long-term neurodevelopmental challenges. Despite advancements in perinatal care, predicting long-term outcomes remains difficult. Early diagnosis is essential for timely interventions to reduce brain injury, with tools such as Magnetic Resonance Imaging, brain ultrasound, and emerging biomarkers playing a possible key role.
View Article and Find Full Text PDFInt J Pharm
January 2025
School of Food Science and Engineering, Chongqing Technology and Business University, Chongqing 400067, China.
Neuroinflammation plays an indispensable role in neural damages after ICH, responsible for the induced high mortality and poor prognosis. NLRP3 inflammasome, which is known mediated by ROS, has been widely documented to aggravate brain injuries. Therefore, suppressing neural injuries by ROS/NLRP3 pathway may be beneficial in treating ICH.
View Article and Find Full Text PDFPhysiol Behav
January 2025
Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China. Electronic address:
Background: Continuous electroacupuncture pre-conditioning (EPRC) and post-conditioning (EPOC) effectively improve motor dysfunction after acute cerebral ischemia, but they require multiple treatments. Recently, electroacupuncture per-conditioning (EPEC) has demonstrated neuroprotective effects, indicating that this single-session intervention has short-term efficacy.
Objective: To evaluate the effect of EPEC at Huantiao (GB30) on motor recovery in acute cerebral ischemia mice.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!