Altering the brain circuits for reading through intervention: a magnetic source imaging study.

Neuropsychology

Department of NeurosurgeryVivian L. Smith Institute of Neurologic Research, University of Texas, Health Science Center, Houston, TX, USA.

Published: July 2007

Intervention-related changes in spatiotemporal profiles of regional brain activation were examined by whole-head magnetoencephalography in 15 children with severe reading difficulties who had failed to show adequate progress to quality reading instruction during Grade 1. Intensive intervention initially focused on phonological decoding skills (for 8 weeks) and, during the subsequent 8 weeks, on rapid word recognition ability. Clinically significant improvement in reading skills was noted in 8 children who showed "normalizing" changes in their spatiotemporal profiles of regional brain activity (increased duration of activity in the left temporoparietal region and a shift in the relative timing of activity in temporoparietal and inferior frontal regions). Seven children who demonstrated "compensatory" changes in brain activity (increased duration of activity in the right temporoparietal region and frontal areas, bilaterally) did not show adequate response to intervention. Nonimpaired readers did not show systematic changes in brain activity across visits.

Download full-text PDF

Source
http://dx.doi.org/10.1037/0894-4105.21.4.485DOI Listing

Publication Analysis

Top Keywords

brain activity
12
changes spatiotemporal
8
spatiotemporal profiles
8
profiles regional
8
regional brain
8
activity increased
8
increased duration
8
duration activity
8
temporoparietal region
8
activity temporoparietal
8

Similar Publications

Somatostatin-expressing neurons in the medial prefrontal cortex promote sevoflurane anesthesia in mice.

Anesthesiology

January 2025

Key Laboratory of Brain Science, Key Laboratory of Anesthesia and Organ Protection of Ministry of Education (In Cultivation), Zunyi Medical University, Zunyi, 563100, Guizhou Province, China.

Background: The medial prefrontal cortex plays a crucial role in regulating consciousness. However, the specific functions of its excitatory and inhibitory networks during anesthesia remain uncertain. Here we explored the hypothesis that somatostatin interneurons in the medial prefrontal cortex enhance the effects of sevoflurane anesthesia by increasing GABA transmission to pyramidal neurons.

View Article and Find Full Text PDF

The anterior cingulate cortex (ACC) is recognized as a pivotal cortical region involved in the perception of pain. The retrosplenial cortex (RSC), located posterior to the ACC, is known to play a significant role in navigation and memory processes. Although the projections from the RSC to the ACC have been found, the specifics of the synaptic connections and the functional implications of the RSC-ACC projections remain less understood.

View Article and Find Full Text PDF

The intracellular protozoan Toxoplasma gondii manipulates host cell signaling to avoid targeting by autophagosomes and lysosomal degradation. Epidermal Growth Factor Receptor (EGFR) is a mediator of this survival strategy. However, EGFR expression is limited in the brain and retina, organs affected in toxoplasmosis.

View Article and Find Full Text PDF

Goal-directed behavior requires the effective suppression of distractions to focus on the task at hand. Although experimental evidence suggests that brain areas in the prefrontal and parietal lobe contribute to the selection of task-relevant and the suppression of task-irrelevant stimuli, how conspicuous distractors are encoded and effectively ignored remains poorly understood. We recorded neuronal responses from 2 regions in the prefrontal and parietal cortex of macaques, the frontal eye fields (FEFs) and the lateral intraparietal (LIP) area, during a visual search task, in the presence and absence of a salient distractor.

View Article and Find Full Text PDF

This study examined the effects of treadmill running (TR) regimens on craniofacial pain- and anxiety-like behaviors, as well as their effects on neural changes in specific brain regions of male mice subjected to repeated social defeat stress (SDS) for 10 days. Behavioral and immunohistochemical experiments were conducted to evaluate the impact of TR regimens on SDS-related those behaviors, as well as epigenetic and neural activity markers in the anterior cingulate cortex (ACC), insular cortex (IC), rostral ventromedial medulla (RVM), and cervical spinal dorsal horn (C2). Behavioral responses were quantified using multiple tests, while immunohistochemistry measured histone H3 acetylation, histone deacetylases (HDAC1, HDAC2), and neural activity markers (FosB and phosphorylated cAMP response element-binding protein (pCREB).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!