Tissue electrical impedance is a function of its architecture and has been used to differentiate normal and cancer tissues in a variety of organs including breast, cervix, skin, and bladder. This paper investigates the possibility of differentiating normal and malignant prostate tissue using bioimpedance spectra. A probe was designed to measure impedance spectra over the range of 10 kHz to 1 MHz. The probe was fully characterized using discrete loads and saline solutions of different concentrations. Impedance spectra of five ex vivo prostates were measured in the operating room immediately following radical prostatectomy. Wilcoxon signed-rank tests were used to compare the normal and malignant findings. The impedance probe had a signal-to-noise ratio (SNR) > 84 dB across the entire spectrum and measured a tissue volume of approximately 46 mm(3). At 10 kHz, prostate conductivity (or) ranged from 0.232 S/m to 0.310 S/m for tumor and from 0.238 S/m to 0.901 S/m for normal tissue. At 1 MHz the ranges were 0.301 S/m to 0.488 S/m for tumor and 0.337 S/m to 1.149 S/m for normal. Prostate permittivity (epsilonr) ranged from 6.64 x10(4) to 1.25 x 10(5) for tumor and from 9.08 x 10(4) to 4.49 x 10(5) for normal tissues at 10 kHz. And, at 1 MHz the er ranges were 9.23 x 10(2) to 1.88 x 10(3) for tumor and 1.16 x 10(3) to 2.18 x 10(3) for normal tissue. Both sigma and epsilonr of tumor tissue were found to be significantly lower than that of normal tissue (P < 0.0001). Conductivity and permittivity are both higher in normal prostate tissues than they are in malignant tissue making them suitable parameters for tissue differentiation. This is in agreement with trends observed in other tissues reported in much of the literature. Expanded studies are needed to further validate this finding and to explore the biological mechanism responsible for generating the results.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TBME.2007.897331 | DOI Listing |
Biomed Phys Eng Express
January 2025
School of Engineering and Computing, University of the West of Scotland, University of the West of Scotland - Paisley Campus, Paisley PA1 2BE, UK, City, Paisley, PA1 2BE, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.
Cancer grade classification is a challenging task identified from the cell structure of healthy and abnormal tissues. The partitioner learns about the malignant cell through the grading and plans the treatment strategy accordingly. A major portion of researchers used DL models for grade classification.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616.
Seeds are complex structures composed of three regions, embryo, endosperm, and seed coat, with each further divided into subregions that consist of tissues, cell layers, and cell types. Although the seed is well characterized anatomically, much less is known about the genetic circuitry that dictates its spatial complexity. To address this issue, we profiled mRNAs from anatomically distinct seed subregions at several developmental stages.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Center for Nutritional Sciences, Food Science and Human Nutrition Department, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32611.
Documented worldwide, impaired immunity is a cardinal signature resulting from loss of dietary zinc, an essential micronutrient. A steady supply of zinc to meet cellular requirements is regulated by an array of zinc transporters. Deletion of the transporter Zip14 (Slc39a14) in mice produced intestinal inflammation.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Oncode Institute, Hubrecht Institute-Royal Netherlands Academy of Arts and Science, Utrecht 3584 CT, The Netherlands.
Matrigel/BME, a basement membrane-like preparation, supports long-term growth of epithelial 3D organoids from adult stem cells [T. Sato , , 262-265 (2009); T. Sato , , 1762-1772 (2011)].
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104.
Dorsal closure is a process that occurs during embryogenesis of . During dorsal closure, the amnioserosa (AS), a one-cell thick epithelial tissue that fills the dorsal opening, shrinks as the lateral epidermis sheets converge and eventually merge. During this process, both shape index and aspect ratio of amnioserosa cells increase markedly.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!