The influence of mineralization on intratrabecular stress and strain distribution in developing trabecular bone.

Ann Biomed Eng

Department of Functional Anatomy, Academic Centre for Dentistry Amsterdam (ACTA), Universiteit van Amsterdam and Vrije Universiteit, Meibergdreef 15, Amsterdam, 1105 AZ, The Netherlands.

Published: October 2007

The load-transfer pathway in trabecular bone is largely determined by its architecture. However, the influence of variations in mineralization is not known. The goal of this study was to examine the influence of inhomogeneously distributed degrees of mineralization (DMB) on intratrabecular stresses and strains. Cubic mandibular condylar bone specimens from fetal and newborn pigs were used. Finite element models were constructed, in which the element tissue moduli were scaled to the local DMB. Disregarding the observed distribution of mineralization was associated with an overestimation of average equivalent strain and underestimation of von Mises equivalent stress. From the surface of trabecular elements towards their core the strain decreased irrespective of tissue stiffness distribution. This indicates that the trabecular elements were bent during the compression experiment. Inhomogeneously distributed tissue stiffness resulted in a low stress at the surface that increased towards the core. In contrast, disregarding this tissue stiffness distribution resulted in high stress at the surface which decreased towards the core. It was concluded that the increased DMB, together with concurring alterations in architecture, during development leads to a structure which is able to resist increasing loads without an increase in average deformation, which may lead to damage.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10439-007-9345-3DOI Listing

Publication Analysis

Top Keywords

stress surface
12
tissue stiffness
12
trabecular bone
8
inhomogeneously distributed
8
trabecular elements
8
stiffness distribution
8
influence mineralization
4
mineralization intratrabecular
4
stress
4
intratrabecular stress
4

Similar Publications

Background: In response to iron deficiency and other environmental stressors, cyanobacteria producing siderophores can help in ameliorating plant stress and enhancing growth physiological and biochemical processes. The objective of this work was to screen the potential of Arthrospira platensis, Pseudanabaena limnetica, Nostoc carneum, and Synechococcus mundulus for siderophore production to select the most promising isolate, then to examine the potentiality of the isolated siderophore in promoting Zea mays seedling growth in an iron-limited environment.

Results: Data of the screening experiment illustrated that Synechococcus mundulus significantly recorded the maximum highest siderophore production (78 ± 2%) while the minimum production was recorded by Nostoc carneum (24.

View Article and Find Full Text PDF

Contrasting effects of arsenic on mycorrhizal-mediated silicon and phosphorus uptake by rice.

J Environ Manage

January 2025

Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.

Silicon (Si) and arbuscular mycorrhizal fungi (AMF) increase plant resistance to various environmental stresses, including heavy metal (and metalloid) toxicity. Although Si and AMF each independently enhance plant tolerance, the nature of their interactions and their combined impacts on nutrient uptake, especially in the context of toxic elements such as arsenic (As), remains to be elucidated. This study investigated AMF-mediated regulation of plant nutrient uptake under As stress using rice, a model Si-accumulating plant.

View Article and Find Full Text PDF

Purpose: The present study is to explore the appropriate plantar support force for its effect on improving the collapse of the medial longitudinal arch with flexible flatfoot.

Methods: A finite element model with the plantar fascia attenuation was constructed simulating as flexible flatfoot. The appropriate plantar support force was evaluated.

View Article and Find Full Text PDF

The cervical uncinate process is a unique structure of the cervical spine that undergoes significant changes in its morphological characteristics with age, and these changes may be related to osteoporosis. This study aimed to observe the distribution of cancellous bone in the cervical uncinate process and its morphological features using micro-computed tomography (Micro-CT) to gain a deeper understanding of the morphological characteristics of the uncinate microstructure. We performed Micro-CT scans on 31 sets of C3-C7 vertebrae, a total of 155 intact bone samples, and subsequently used the measurement software with the Micro-CT system to obtain parameters related to the cancellous bone of the uncinate process.

View Article and Find Full Text PDF

Objectives: To evaluate the shear bond strength (SBS) of universal cements (UCs) to dentin prepared with different diamond burs using various adhesive strategies.

Materials And Methods: One-hundred-twenty molars were prepared to expose the mid-coronal dentin. The teeth were divided into two groups according to diamond bur preparations: coarse and super-fine grit burs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!