Phase characterization of indomethacin in binary solid dispersions with PVP VA64 or Myrj 52.

Int J Pharm

Laboratorium voor Farmacotechnologie en Biofarmacie, Faculteit Farmaceutische Wetenschappen, Katholieke Universiteit Leuven, Campus Gasthuisberg O&N2 bus 921, B-3000 Leuven, Belgium.

Published: December 2007

In the present study the properties of binary solid dispersions made up of PVP VA64, Myrj 52 and indomethacin (IMC) are studied and characterized. The solid dispersions were prepared by dissolving the materials in dichloromethane, followed by solvent evaporation under reduced pressure at 55 degrees C in a rotavapor. Binary solid dispersions were characterized by standard and modulated temperature differential scanning calorimetry (MTDSC), thermogravimetry (TGA) and X-ray powder diffraction (XRPD). XRPD analysis showed that the initial IMC was in its gamma-form, and that it was transformed to the beta-form (reported to be a solvate) together with an amorphous fraction in the solid dispersions. A mixture of the beta-form and amorphous IMC was also obtained in the binary systems containing less than 30% polymer. IMC without adding polymer was subjected to the same experimental procedures as in the solid dispersions, and used as a model to characterize the solid-state transformations. The following order of transitions was observed: from the initial gamma-form, the beta-form was obtained together with an amorphous component, then the crystalline beta-form transforms into the alpha-form which melts and recrystallizes into the most stable gamma-form.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2007.05.046DOI Listing

Publication Analysis

Top Keywords

solid dispersions
24
binary solid
12
dispersions pvp
8
pvp va64
8
va64 myrj
8
beta-form amorphous
8
solid
6
dispersions
6
phase characterization
4
characterization indomethacin
4

Similar Publications

This study evaluates the efficacy of twin screw melt granulation (TSMG), and hot-melt extrusion (HME) techniques in enhancing the solubility and dissolution of simvastatin (SIM), a poorly water-soluble drug with low bioavailability. Additionally, the study explores the impact of binary polymer blends on the drug's miscibility, solubility, and in vitro release profile. SIM was processed with various polymeric combinations at a 30% / drug load, and a 1:1 ratio of binary polymer blends, including Soluplus (SOP), Kollidon K12 (K12), Kollidon VA64 (KVA), and Kollicoat IR (KIR).

View Article and Find Full Text PDF

Background/objectives: A sustained-release formulation of fenofibrate while enhancing drug dissolution with minimal food effect is critical for maximizing the therapeutic benefits of fenofibrate. Therefore, this study aimed to develop an effective solid dispersion formulation of fenofibrate for simultaneous enhancement in the extent and duration of drug exposure.

Methods: Fenofibrate-loaded solid dispersions (FNSDs) were prepared using poloxamer 407 and Eudragit RSPO at varied ratios via solvent evaporation.

View Article and Find Full Text PDF

Experimental Investigation of Spray Drying Breakup Regimes of a PVP-VA 64 Solution Using High-Speed Imaging.

Pharmaceutics

December 2024

AbbVie Deutschland GmbH & Co. KG, Knollstraße, 67061 Ludwigshafen am Rhein, Germany.

Atomization plays a key role in spray drying, a process widely used in the pharmaceutical, chemical, biological, and food and beverage industries. In the pharmaceutical industry, spray drying is particularly important in the preparation of amorphous solid dispersions, which enhance the bioavailability of active pharmaceutical ingredients when mixed with a polymer. In this study, a 3D-printed adaptation of a commercial spray dryer nozzle (PHARMA-SD PSD-1, GEA Group AG) was used to investigate the atomization of PVP-VA 64 polymer solutions under varying flow conditions using high-speed diffuse back-illumination.

View Article and Find Full Text PDF

Active pharmaceutical ingredient (API) content is a critical quality attribute (CQA) of amorphous solid dispersions (ASDs) prepared by spraying a solution of APIs and polymers onto the excipients in fluid bed granulator. This study presents four methods for quantifying API content during ASD preparation. Raman and three near-infrared (NIR) process analysers were utilized to develop methods for API quantification.

View Article and Find Full Text PDF

Melt-based 3D printing technologies are currently extensively evaluated for research purposes as well as for industrial applications. Classical approaches often require intermediates, which can pose a risk to stability and add additional complexity to the process. The Advanced Melt Drop Deposition (AMDD) technology, is a 3D printing process that combines the principles of melt extrusion with pressure-driven ejection, similar to injection molding.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!