Steroid sulfatase (EC 3.1.6.2) is an enzyme that removes the sulfate group from 3beta-hydroxysteroid sulfates. This enzyme is best known for its role in estrogen production via the fetal adrenal-placental pathway during pregnancy; however, it also has important functions in other physiological and pathological steroid pathways. The objective of this study was to examine the distribution of steroid sulfatase in normal human tissues and in breast cancers using immunohistochemistry, employing a newly developed steroid sulfatase antibody. A rabbit polyclonal antiserum was generated against a peptide representing a conserved region of the steroid sulfatase protein. In Western blotting experiments using human placental microsomes, this antiserum crossreacted with a 65 kDa protein, the reported size of steroid sulfatase. The antiserum also crossreacted with single protein bands in Western blots of microsomes from two human breast cancer cell lines (MDA-MB-231 and MCF-7) and from rat liver; however, there were some size differences in the immunoreactive bands among tissues. The steroid sulfatase antibody was used in immunohistochemical analyses of individual human tissue slides as well as a human tissue microarray. For single tissues, human placenta and liver showed strong positive staining against the steroid sulfatase antibody. ER+/PR+ breast cancers also showed relatively strong levels of steroid sulfatase immunoreactivity. Normal human breast showed moderate levels of steroid sulfatase immunoreactivity, while ER-/PR- breast cancer showed weak immunoreactivity. This confirms previous reports that steroid sulfatase is higher in hormone-dependent breast cancers. For the tissue microarray, most tissues showed some detectable level of steroid sulfatase immunoreactivity, but there were considerable differences among tissues, with skin, liver and lymph nodes having the highest immunoreactivity and brain tissues having the lowest. These data reveal the utility of immunohistochemistry in evaluation of steroid sulfatase activity among tissues. The newly developed antibody should be useful in studies of both humans and rats.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jsbmb.2006.12.105 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!