AI Article Synopsis

  • Bioactive scaffolds, like collagen, are essential for promoting cell adhesion and differentiation, particularly in bone regeneration.
  • The collagen-binding motif (CBM) peptide from osteopontin can bind to collagen without any chemicals, enhancing its ability to encourage mineralization.
  • In vivo studies show that the combination of the CBM peptide and collagen significantly aids in bone formation, making it a promising option for bone regeneration applications.

Article Abstract

Bioactive scaffolds inducing cell adhesion, differentiation have been premise for optimal formation of target tissue. Collagen has been employed as a tissue regenerative scaffold especially for bone regeneration and has been chemically surface-modified to present bioactivity. Herein, we show that peptide, denoted as collagen-binding motif (CBM, GLRSKSKKFRRPDIQYPDATDEDITSHM) identified from osteopontin (OPN) protein, was able to specifically bind collagen without chemical conjugation, while presenting apatite forming capability in vitro and in vivo. Collagen surface alone was not able to induce noticeable apatite nucleation however, mineralization was evident when assembled with CBM peptide, implying that the collagen-CBM assembly played a pivotal role in biomineralization. In vivo result further demonstrated that the CBM peptide in complex with material was able to induce bone formation by helping mineralization in the bone defect. Taken together, the CBM peptide herein and its assembly with collagen can be applied as an inducer of biomineralization as well as a bioactive scaffold for bone regeneration.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2007.05.040DOI Listing

Publication Analysis

Top Keywords

cbm peptide
12
bioactive scaffold
8
vitro vivo
8
scaffold bone
8
bone regeneration
8
peptide
5
collagen
5
assembly collagen-binding
4
collagen-binding peptide
4
peptide collagen
4

Similar Publications

Structural and functional snapshots of a broad-specificity endoglucanase from Thermogutta terrifontis for biomass saccharification.

Arch Biochem Biophys

December 2024

The Division of Structural Biology, The Nuffield Department of Medicine, University of Oxford, UK; The Rosalind Franklin Institute, Harwell Campus, Didcot, OX11 0QS, UK. Electronic address:

Multifunctionality, processivity, and thermostability are critical for the cost-effective enzymatic saccharification of non-food plant biomass polymers such as β-glucans, celluloses, and xylans to generate biofuels and other valuable products. We present molecular insights into a processive multifunctional endo-1,3-1,4-β-d-glucanase (Tt_End5A) from the hyperthermophilic bacterium Thermogutta terrifontis. Tt_End5A demonstrated activities against a broad spectrum of β-polysaccharides, including barley glucan, lichenan, carboxymethyl cellulose, regenerated amorphous cellulose (RAC), Avicel, xylan, laminarin, mannan, curdlan, xanthan, and various chromogenic substrates at pH 7 and temperatures ranging from 70 to 80°C.

View Article and Find Full Text PDF

Antioxidant Peptides from Sacha Inchi Meal: An In Vitro, Ex Vivo, and In Silico Approach.

Foods

December 2024

Instituto de Ciencia y Tecnología de Alimentos (ICTA), Universidad Nacional de Colombia Sede Bogotá, Carrera 30 No. 45-03, Edificio 500A, Bogotá 111321, Colombia.

Plant-derived antioxidant peptides safeguard food against oxidation, helping to preserve its flavor and nutrients, and hold significant potential for use in functional food development. Sacha Inchi Oil Press-Cake (SIPC), a by-product of oil processing, was used to produce Sacha Inchi Protein Concentrate (SPC) in vitro, hydrolyzed by a standardized static INFOGEST 2.0 protocol.

View Article and Find Full Text PDF

Background: C1q tumor necrosis factor (TNF) related proteins 9 (CTRP9) is a novel adipocytokine that has been shown to have a cardioprotective effect in coronary artery disease (CAD). However, there are conflicting results on circulating levels of CTRP9 in patients with and without CAD. This meta-analysis was conducted to investigate the association between circulating CTRP9 levels and CAD.

View Article and Find Full Text PDF

Background: Ulcerative colitis (UC) is a chronic inflammatory bowel disease characterized by relapsing inflammation of the colon. Tanshinone IIA, a compound derived from traditional Chinese medicine, has demonstrated anti-inflammatory properties and may enhance treatment outcomes when combined with mesalazine. This study aims to determine the overall response rate of Tanshinone IIA in combination with mesalazine for the treatment of UC.

View Article and Find Full Text PDF

Proteomic Analysis of the Major Alkali-Soluble Inca Peanut () Proteins.

Foods

October 2024

Instituto de Ciencia y Tecnología de Alimentos (ICTA), Universidad Nacional de Colombia Sede Bogotá, Carrera 30 No. 45-03, Edificio 500A, Bogotá 111321, Colombia.

Sacha Inchi () oil press-cake (SIPC) represents a new source of proteins of high biological value, with promissory food applications. However, knowledge of these proteins remains limited. In this study, a Sacha Inchi protein concentrate (SPC) was extracted from the SIPC, and proteomic analysis was performed to identify the major alkaline-soluble proteins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!