The leukocyte enzyme myeloperoxidase (MPO) is capable of catalyzing the oxidation of chloride and bromide ions, at physiological concentrations of these substrates, by hydrogen peroxide, generating hypochlorous acid (HOCl) and hypobromous acid (HOBr), respectively. Our previous results showed that the hypohalous acids formed react with double bonds in phosphatidylcholines (PCs) to produce chloro- and bromohydrins. Lysophosphatidylcholine (lyso-PC) is additionally formed in PCs with two or more double bonds. This study was conducted to determine the effect physiological chloride concentration (140 mM) has on the formation of bromohydrins and lyso-PC from unsaturated PC upon treatment with the myeloperoxidase/hydrogen peroxide/bromide (MPO/H2O2/Br-) system using physiological bromide concentrations (20-100 microM). The composition of reaction products was analyzed by matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF MS). With monounsaturated PC, we demonstrated that the rate and extent of mono-bromohydrin formation were higher in the samples with 140 mM chloride compared to those with no added chloride. Moreover, mono-bromohydrin came to be the major product and no mono-chlorohydrin was observed already at 60 microM bromide. We attributed these effects to the involvement of HOBr arising from the reaction of MPO-derived HOCl with bromide rather than to the exchange of bromide with chlorine atoms of chlorohydrins or direct formation of HOBr by MPO. The presence of chloride shifted the pH optimum for mono-bromohydrin formation (pH 5.0) toward neutral values, and a significant yield of mono-bromohydrin was detected at physiological pH values (7.0-7.4). For polyunsaturated PC, chloride enhanced also lyso-PC production, the effect being pronounced at bromide concentrations below 40 microM. The results indicate that at physiological levels of chloride and bromide, chloride promotes MPO-mediated formation of bromohydrins and lyso-PC in unsaturated phospholipids.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemphyslip.2007.05.005DOI Listing

Publication Analysis

Top Keywords

myeloperoxidase/hydrogen peroxide/bromide
8
chloride
8
chloride bromide
8
double bonds
8
formation bromohydrins
8
bromohydrins lyso-pc
8
lyso-pc unsaturated
8
bromide concentrations
8
mono-bromohydrin formation
8
bromide
7

Similar Publications

Broad-spectrum antimicrobial photocatalysis mediated by titanium dioxide and UVA is potentiated by addition of bromide ion via formation of hypobromite.

Free Radic Biol Med

June 2016

Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA. Electronic address:

Antimicrobial photocatalysis involves the UVA excitation of titanium dioxide (TiO2) nanoparticles (particularly the anatase form) to produce reactive oxygen species (ROS) that kill microbial cells. For the first time we report that the addition of sodium bromide to photoactivated TiO2 (P25) potentiates the killing of Gram-positive, Gram-negative bacteria and fungi by up to three logs. The potentiation increased with increasing bromide concentration in the range of 0-10mM.

View Article and Find Full Text PDF

The leukocyte enzyme myeloperoxidase (MPO) is capable of catalyzing the oxidation of chloride and bromide ions, at physiological concentrations of these substrates, by hydrogen peroxide, generating hypochlorous acid (HOCl) and hypobromous acid (HOBr), respectively. Our previous results showed that the hypohalous acids formed react with double bonds in phosphatidylcholines (PCs) to produce chloro- and bromohydrins. Lysophosphatidylcholine (lyso-PC) is additionally formed in PCs with two or more double bonds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!